一类新的线性算子解析函数子类的Hankel行列式

IF 1 Q1 MATHEMATICS
Laxmipriya Parida, T. Bulboacă, Ashok KUMAR SAHOO
{"title":"一类新的线性算子解析函数子类的Hankel行列式","authors":"Laxmipriya Parida, T. Bulboacă, Ashok KUMAR SAHOO","doi":"10.46793/kgjmat2204.605p","DOIUrl":null,"url":null,"abstract":"Using the operator L(a, c) defined by Carlson and Shaffer, we defined a new subclass of analytic functions ML(λ, a, c). The well known Fekete-Szegö problem, upper bound of Hankel determinant of order two, and coefficient bound of the fourth coefficient is determined. Our investigation generalises some previous results obtained in different articles.","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hankel Determinants for a New Subclasses of Analytic Functions Involving a Linear Operator\",\"authors\":\"Laxmipriya Parida, T. Bulboacă, Ashok KUMAR SAHOO\",\"doi\":\"10.46793/kgjmat2204.605p\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the operator L(a, c) defined by Carlson and Shaffer, we defined a new subclass of analytic functions ML(λ, a, c). The well known Fekete-Szegö problem, upper bound of Hankel determinant of order two, and coefficient bound of the fourth coefficient is determined. Our investigation generalises some previous results obtained in different articles.\",\"PeriodicalId\":44902,\"journal\":{\"name\":\"Kragujevac Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kragujevac Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46793/kgjmat2204.605p\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2204.605p","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用Carlson和Shaffer定义的算子L(a,c),我们定义了一个新的分析函数ML(λ,a,c)的子类。确定了著名的Fekete-Szegö问题,二阶Hankel行列式的上界和第四系数的系数界。我们的调查概括了以前在不同文章中获得的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hankel Determinants for a New Subclasses of Analytic Functions Involving a Linear Operator
Using the operator L(a, c) defined by Carlson and Shaffer, we defined a new subclass of analytic functions ML(λ, a, c). The well known Fekete-Szegö problem, upper bound of Hankel determinant of order two, and coefficient bound of the fourth coefficient is determined. Our investigation generalises some previous results obtained in different articles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信