Aharonov-Bohm磁场中波动方程和狄拉克方程的广义Strichartz估计

IF 1.1 3区 数学 Q2 MATHEMATICS, APPLIED
F. Cacciafesta, Zhiqing Yin, Junyong Zhang
{"title":"Aharonov-Bohm磁场中波动方程和狄拉克方程的广义Strichartz估计","authors":"F. Cacciafesta, Zhiqing Yin, Junyong Zhang","doi":"10.4310/dpde.2022.v19.n1.a4","DOIUrl":null,"url":null,"abstract":"We prove generalized Strichartz estimates for wave and massless Dirac equations in Aharonov-Bohm magnetic fields. Following a well established strategy to deal with scaling critical perturbations of dispersive PDEs, we make use of Hankel transform and rely on some precise estimates on Bessel functions. As a complementary result, we prove a local smoothing estimate for the Klein-Gordon equation in the same magnetic field.","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Generalized Strichartz estimates for wave and Dirac equations in Aharonov–Bohm magnetic fields\",\"authors\":\"F. Cacciafesta, Zhiqing Yin, Junyong Zhang\",\"doi\":\"10.4310/dpde.2022.v19.n1.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove generalized Strichartz estimates for wave and massless Dirac equations in Aharonov-Bohm magnetic fields. Following a well established strategy to deal with scaling critical perturbations of dispersive PDEs, we make use of Hankel transform and rely on some precise estimates on Bessel functions. As a complementary result, we prove a local smoothing estimate for the Klein-Gordon equation in the same magnetic field.\",\"PeriodicalId\":50562,\"journal\":{\"name\":\"Dynamics of Partial Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics of Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/dpde.2022.v19.n1.a4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/dpde.2022.v19.n1.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

我们证明了Aharonov-Bohm磁场中波动和无质量Dirac方程的广义Strichartz估计。根据一个很好的策略来处理色散偏微分方程的标度临界扰动,我们利用Hankel变换,并依赖于贝塞尔函数的一些精确估计。作为一个补充结果,我们证明了在相同磁场中Klein-Gordon方程的局部平滑估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Strichartz estimates for wave and Dirac equations in Aharonov–Bohm magnetic fields
We prove generalized Strichartz estimates for wave and massless Dirac equations in Aharonov-Bohm magnetic fields. Following a well established strategy to deal with scaling critical perturbations of dispersive PDEs, we make use of Hankel transform and rely on some precise estimates on Bessel functions. As a complementary result, we prove a local smoothing estimate for the Klein-Gordon equation in the same magnetic field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishes novel results in the areas of partial differential equations and dynamical systems in general, with priority given to dynamical system theory or dynamical aspects of partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信