关于一类与拟fredholm算子相关的算子

IF 0.2 Q4 MATHEMATICS
Z. Garbouj, H. Skhiri
{"title":"关于一类与拟fredholm算子相关的算子","authors":"Z. Garbouj, H. Skhiri","doi":"10.31392/mfat-npu26_2.2020.06","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a generalization of quasi-Fredholm operators [7] to k-quasi-Fredholm operators on Hilbert spaces for nonnegative integer k. The case when k = 0, represents the set of quasi-Fredholm operators and the meeting of the classes of k-quasi-Fredholm operators is called the class of pseudoquasi-Fredholm operators. We present some fundamental properties of the operators belonging to these classes and, as applications, we prove some spectral theorem and finite-dimensional perturbations results for these classes. Also, the notion of new index of a pseudo-quasi-Fredholm operator called pq-index is introduced and the stability of this index by finite-dimensional perturbations is proved. This paper extends some results proved in [5] to closed unbounded operators.","PeriodicalId":44325,"journal":{"name":"Methods of Functional Analysis and Topology","volume":"26 1","pages":"141-166"},"PeriodicalIF":0.2000,"publicationDate":"2020-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a new class of operators related to quasi-Fredholm operators\",\"authors\":\"Z. Garbouj, H. Skhiri\",\"doi\":\"10.31392/mfat-npu26_2.2020.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a generalization of quasi-Fredholm operators [7] to k-quasi-Fredholm operators on Hilbert spaces for nonnegative integer k. The case when k = 0, represents the set of quasi-Fredholm operators and the meeting of the classes of k-quasi-Fredholm operators is called the class of pseudoquasi-Fredholm operators. We present some fundamental properties of the operators belonging to these classes and, as applications, we prove some spectral theorem and finite-dimensional perturbations results for these classes. Also, the notion of new index of a pseudo-quasi-Fredholm operator called pq-index is introduced and the stability of this index by finite-dimensional perturbations is proved. This paper extends some results proved in [5] to closed unbounded operators.\",\"PeriodicalId\":44325,\"journal\":{\"name\":\"Methods of Functional Analysis and Topology\",\"volume\":\"26 1\",\"pages\":\"141-166\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2020-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods of Functional Analysis and Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31392/mfat-npu26_2.2020.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods of Functional Analysis and Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31392/mfat-npu26_2.2020.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文将非负整数k的Hilbert空间上的拟Fredholm算子[7]推广为k-拟Fredholm-算子。当k=0时,表示拟Fredholm-算子集,k-拟Fredholm-算子类的会称为拟拟Fredholl-算子类。我们给出了属于这些类的算子的一些基本性质,并作为应用,证明了这些类的一些谱定理和有限维扰动结果。此外,还引入了伪拟Fredholm算子pq指数的新指数的概念,并证明了该指数在有限维扰动下的稳定性。本文将[5]中证明的一些结果推广到闭无界算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a new class of operators related to quasi-Fredholm operators
In this paper, we introduce a generalization of quasi-Fredholm operators [7] to k-quasi-Fredholm operators on Hilbert spaces for nonnegative integer k. The case when k = 0, represents the set of quasi-Fredholm operators and the meeting of the classes of k-quasi-Fredholm operators is called the class of pseudoquasi-Fredholm operators. We present some fundamental properties of the operators belonging to these classes and, as applications, we prove some spectral theorem and finite-dimensional perturbations results for these classes. Also, the notion of new index of a pseudo-quasi-Fredholm operator called pq-index is introduced and the stability of this index by finite-dimensional perturbations is proved. This paper extends some results proved in [5] to closed unbounded operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
25 weeks
期刊介绍: Methods of Functional Analysis and Topology (MFAT), founded in 1995, is a peer-reviewed arXiv overlay journal publishing original articles and surveys on general methods and techniques of functional analysis and topology with a special emphasis on applications to modern mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信