Topp-Leone逆分布下多组分应力强度可靠性的估计

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hossein Pasha-Zanoosi
{"title":"Topp-Leone逆分布下多组分应力强度可靠性的估计","authors":"Hossein Pasha-Zanoosi","doi":"10.18187/pjsor.v18i4.3655","DOIUrl":null,"url":null,"abstract":"In this article, the reliability inference for a multicomponent stress-strength (MSS) model, when both stress and strength random variables follow inverse Topp-Leone distributions, was studied. The maximum likelihood and uniformly minimum variance unbiased estimates for the reliability of MSS model were obtained explicitly. The exact Bayes estimate of MSS reliability was derived the under squared error loss function. Also, the Bayes estimate was obtained using the Monte Carlo Markov Chain method for comparison with the aforementioned exact estimate. The asymptotic confidence interval was determined under the expected Fisher information matrix. Furthermore, the highest probability density credible interval was established through using Gibbs sampling method. Monte Carlo simulations were implemented to compare the different proposed methods. Finally, a real life example was presented in support of the suggested procedures.  ","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Multicomponent Stress-strength Reliability under Inverse Topp-Leone Distribution\",\"authors\":\"Hossein Pasha-Zanoosi\",\"doi\":\"10.18187/pjsor.v18i4.3655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the reliability inference for a multicomponent stress-strength (MSS) model, when both stress and strength random variables follow inverse Topp-Leone distributions, was studied. The maximum likelihood and uniformly minimum variance unbiased estimates for the reliability of MSS model were obtained explicitly. The exact Bayes estimate of MSS reliability was derived the under squared error loss function. Also, the Bayes estimate was obtained using the Monte Carlo Markov Chain method for comparison with the aforementioned exact estimate. The asymptotic confidence interval was determined under the expected Fisher information matrix. Furthermore, the highest probability density credible interval was established through using Gibbs sampling method. Monte Carlo simulations were implemented to compare the different proposed methods. Finally, a real life example was presented in support of the suggested procedures.  \",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18187/pjsor.v18i4.3655\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18187/pjsor.v18i4.3655","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了应力和强度随机变量均服从逆Topp-Leone分布的多分量应力-强度(MSS)模型的可靠性推断。明确地得到了MSS模型可靠性的最大似然和一致最小方差的无偏估计。利用误差平方下损失函数,得到了MSS可靠度的精确贝叶斯估计。同时,利用蒙特卡洛马尔可夫链方法得到贝叶斯估计,并与上述精确估计进行比较。在期望费雪信息矩阵下确定渐近置信区间。利用Gibbs抽样方法建立了最高概率密度可信区间。通过蒙特卡罗仿真比较了不同的方法。最后,给出了一个实际例子来支持所建议的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Multicomponent Stress-strength Reliability under Inverse Topp-Leone Distribution
In this article, the reliability inference for a multicomponent stress-strength (MSS) model, when both stress and strength random variables follow inverse Topp-Leone distributions, was studied. The maximum likelihood and uniformly minimum variance unbiased estimates for the reliability of MSS model were obtained explicitly. The exact Bayes estimate of MSS reliability was derived the under squared error loss function. Also, the Bayes estimate was obtained using the Monte Carlo Markov Chain method for comparison with the aforementioned exact estimate. The asymptotic confidence interval was determined under the expected Fisher information matrix. Furthermore, the highest probability density credible interval was established through using Gibbs sampling method. Monte Carlo simulations were implemented to compare the different proposed methods. Finally, a real life example was presented in support of the suggested procedures.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信