Andrew Messing, Glen Neville, S. Chernova, S. Hutchinson, H. Ravichandar
{"title":"GRSTAPS:图形递归的同时任务分配、规划和调度","authors":"Andrew Messing, Glen Neville, S. Chernova, S. Hutchinson, H. Ravichandar","doi":"10.1177/02783649211052066","DOIUrl":null,"url":null,"abstract":"Effective deployment of multi-robot teams requires solving several interdependent problems at varying levels of abstraction. Specifically, heterogeneous multi-robot systems must answer four important questions: what (task planning), how (motion planning), who (task allocation), and when (scheduling). Although there are rich bodies of work dedicated to various combinations of these questions, a fully integrated treatment of all four questions lies beyond the scope of the current literature, which lacks even a formal description of the complete problem. In this article, we address this absence, first by formalizing this class of multi-robot problems under the banner Simultaneous Task Allocation and Planning with Spatiotemporal Constraints (STAP-STC), and then by proposing a solution that we call Graphically Recursive Simultaneous Task Allocation, Planning, and Scheduling (GRSTAPS). GRSTAPS interleaves task planning, task allocation, scheduling, and motion planning, performing a multi-layer search while effectively sharing information among system modules. In addition to providing a unified solution to STAP-STC problems, GRSTAPS includes individual innovations both in task planning and task allocation. At the task planning level, our interleaved approach allows the planner to abstract away which agents will perform a task using an approach that we refer to as agent-agnostic planning. At the task allocation level, we contribute a search-based algorithm that can simultaneously satisfy planning constraints and task requirements while optimizing the associated schedule. We demonstrate the efficacy of GRSTAPS using detailed ablative and comparative experiments in a simulated emergency-response domain. Results of these experiments conclusively demonstrate that GRSTAPS outperforms both ablative baselines and state-of-the-art temporal planners in terms of computation time, solution quality, and problem coverage.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"41 1","pages":"232 - 256"},"PeriodicalIF":7.5000,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"GRSTAPS: Graphically Recursive Simultaneous Task Allocation, Planning, and Scheduling\",\"authors\":\"Andrew Messing, Glen Neville, S. Chernova, S. Hutchinson, H. Ravichandar\",\"doi\":\"10.1177/02783649211052066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective deployment of multi-robot teams requires solving several interdependent problems at varying levels of abstraction. Specifically, heterogeneous multi-robot systems must answer four important questions: what (task planning), how (motion planning), who (task allocation), and when (scheduling). Although there are rich bodies of work dedicated to various combinations of these questions, a fully integrated treatment of all four questions lies beyond the scope of the current literature, which lacks even a formal description of the complete problem. In this article, we address this absence, first by formalizing this class of multi-robot problems under the banner Simultaneous Task Allocation and Planning with Spatiotemporal Constraints (STAP-STC), and then by proposing a solution that we call Graphically Recursive Simultaneous Task Allocation, Planning, and Scheduling (GRSTAPS). GRSTAPS interleaves task planning, task allocation, scheduling, and motion planning, performing a multi-layer search while effectively sharing information among system modules. In addition to providing a unified solution to STAP-STC problems, GRSTAPS includes individual innovations both in task planning and task allocation. At the task planning level, our interleaved approach allows the planner to abstract away which agents will perform a task using an approach that we refer to as agent-agnostic planning. At the task allocation level, we contribute a search-based algorithm that can simultaneously satisfy planning constraints and task requirements while optimizing the associated schedule. We demonstrate the efficacy of GRSTAPS using detailed ablative and comparative experiments in a simulated emergency-response domain. Results of these experiments conclusively demonstrate that GRSTAPS outperforms both ablative baselines and state-of-the-art temporal planners in terms of computation time, solution quality, and problem coverage.\",\"PeriodicalId\":54942,\"journal\":{\"name\":\"International Journal of Robotics Research\",\"volume\":\"41 1\",\"pages\":\"232 - 256\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2021-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robotics Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/02783649211052066\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/02783649211052066","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
GRSTAPS: Graphically Recursive Simultaneous Task Allocation, Planning, and Scheduling
Effective deployment of multi-robot teams requires solving several interdependent problems at varying levels of abstraction. Specifically, heterogeneous multi-robot systems must answer four important questions: what (task planning), how (motion planning), who (task allocation), and when (scheduling). Although there are rich bodies of work dedicated to various combinations of these questions, a fully integrated treatment of all four questions lies beyond the scope of the current literature, which lacks even a formal description of the complete problem. In this article, we address this absence, first by formalizing this class of multi-robot problems under the banner Simultaneous Task Allocation and Planning with Spatiotemporal Constraints (STAP-STC), and then by proposing a solution that we call Graphically Recursive Simultaneous Task Allocation, Planning, and Scheduling (GRSTAPS). GRSTAPS interleaves task planning, task allocation, scheduling, and motion planning, performing a multi-layer search while effectively sharing information among system modules. In addition to providing a unified solution to STAP-STC problems, GRSTAPS includes individual innovations both in task planning and task allocation. At the task planning level, our interleaved approach allows the planner to abstract away which agents will perform a task using an approach that we refer to as agent-agnostic planning. At the task allocation level, we contribute a search-based algorithm that can simultaneously satisfy planning constraints and task requirements while optimizing the associated schedule. We demonstrate the efficacy of GRSTAPS using detailed ablative and comparative experiments in a simulated emergency-response domain. Results of these experiments conclusively demonstrate that GRSTAPS outperforms both ablative baselines and state-of-the-art temporal planners in terms of computation time, solution quality, and problem coverage.
期刊介绍:
The International Journal of Robotics Research (IJRR) has been a leading peer-reviewed publication in the field for over two decades. It holds the distinction of being the first scholarly journal dedicated to robotics research.
IJRR presents cutting-edge and thought-provoking original research papers, articles, and reviews that delve into groundbreaking trends, technical advancements, and theoretical developments in robotics. Renowned scholars and practitioners contribute to its content, offering their expertise and insights. This journal covers a wide range of topics, going beyond narrow technical advancements to encompass various aspects of robotics.
The primary aim of IJRR is to publish work that has lasting value for the scientific and technological advancement of the field. Only original, robust, and practical research that can serve as a foundation for further progress is considered for publication. The focus is on producing content that will remain valuable and relevant over time.
In summary, IJRR stands as a prestigious publication that drives innovation and knowledge in robotics research.