脉搏测光装置的计量维护研制

V. Degtjaruk, М. Khоdаkоvskyi, М. Budnyk, V. Budnyk, М. Мudrenko, Ya.G. Tymoshenko
{"title":"脉搏测光装置的计量维护研制","authors":"V. Degtjaruk, М. Khоdаkоvskyi, М. Budnyk, V. Budnyk, М. Мudrenko, Ya.G. Tymoshenko","doi":"10.33955/2307-2180(4)2019.10-16","DOIUrl":null,"url":null,"abstract":"Investigating pulse in different parts of the body is of great interest to doctors. The purpose is the development of metrological maintenance, calibration and certification of photometric instruments [1—3]. Photoplethysmograph is designed to record changes in optical density of a person’s body area with a beam of light reflected in the light [4—6]. Measurements are carried out non-invasively [7]. Such device registers pulse wave (PW) signals and reference ECG with computer processing, Fig. 1—2 [8—10]. A working measure (LED) was created and calibrated using an optical radiation power meter based on the substitution method [11], test bench is at Fig. 3, calibration results — in Table 1 and Fig. 4. Test bench for device calibration and an optical radiator are at Fig. 5—6, view of calibrated signal — at Fig. 7. As a result of calibration (Table 2) the dependence of the output signal on LED power supply (Fig. 8) is obtained, and the calibration dependence is shown at Fig. 9. In the test bench for SMC used standardized light filters KNS-01 at a wavelength of 630 nm (Fig. 10a). The calibration curve is calculated as the dependence of the relative coefficient of inverse light dispersion (RCILD) on PW (Fig. 10b, Table 3). The view of output signal is at Fig. 11. \nAs a result of SMC, the limits of permissible absolute error of 2 % in the range of RCILD (15—100) % are defined.","PeriodicalId":52864,"journal":{"name":"Metrologiia ta priladi","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development of Metrological Maintenance of Photometric Devices For Pulsometry\",\"authors\":\"V. Degtjaruk, М. Khоdаkоvskyi, М. Budnyk, V. Budnyk, М. Мudrenko, Ya.G. Tymoshenko\",\"doi\":\"10.33955/2307-2180(4)2019.10-16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Investigating pulse in different parts of the body is of great interest to doctors. The purpose is the development of metrological maintenance, calibration and certification of photometric instruments [1—3]. Photoplethysmograph is designed to record changes in optical density of a person’s body area with a beam of light reflected in the light [4—6]. Measurements are carried out non-invasively [7]. Such device registers pulse wave (PW) signals and reference ECG with computer processing, Fig. 1—2 [8—10]. A working measure (LED) was created and calibrated using an optical radiation power meter based on the substitution method [11], test bench is at Fig. 3, calibration results — in Table 1 and Fig. 4. Test bench for device calibration and an optical radiator are at Fig. 5—6, view of calibrated signal — at Fig. 7. As a result of calibration (Table 2) the dependence of the output signal on LED power supply (Fig. 8) is obtained, and the calibration dependence is shown at Fig. 9. In the test bench for SMC used standardized light filters KNS-01 at a wavelength of 630 nm (Fig. 10a). The calibration curve is calculated as the dependence of the relative coefficient of inverse light dispersion (RCILD) on PW (Fig. 10b, Table 3). The view of output signal is at Fig. 11. \\nAs a result of SMC, the limits of permissible absolute error of 2 % in the range of RCILD (15—100) % are defined.\",\"PeriodicalId\":52864,\"journal\":{\"name\":\"Metrologiia ta priladi\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrologiia ta priladi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33955/2307-2180(4)2019.10-16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrologiia ta priladi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33955/2307-2180(4)2019.10-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究身体不同部位的脉搏对医生来说很有兴趣。目的是开发光度仪器的计量维护、校准和认证[1-3]。光电体积描记器是用来记录一个人身体区域的光密度变化的,光束在光中反射[4-6]。测量是非侵入性进行的[7]。这种装置通过计算机处理记录脉搏波(PW)信号和参考心电图,如图1-2[8-10]所示。基于替代方法[11],使用光学辐射功率计创建并校准工作测量(LED),测试台见图3,校准结果见图1和图4。设备校准的测试台和光学辐射器如图5-6所示,校准信号视图如图7所示。作为校准的结果(表2),获得了输出信号对LED电源的依赖性(图8),校准依赖性如图9所示。在SMC的试验台中,使用了波长为630 nm的标准化滤光器KNS-01(图10a)。校准曲线计算为反向光散射相对系数(RCILD)对PW的依赖性(图10b,表3)。输出信号如图11所示。作为SMC的结果,定义了RCILD(15-100)%范围内2%的允许绝对误差的极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Metrological Maintenance of Photometric Devices For Pulsometry
Investigating pulse in different parts of the body is of great interest to doctors. The purpose is the development of metrological maintenance, calibration and certification of photometric instruments [1—3]. Photoplethysmograph is designed to record changes in optical density of a person’s body area with a beam of light reflected in the light [4—6]. Measurements are carried out non-invasively [7]. Such device registers pulse wave (PW) signals and reference ECG with computer processing, Fig. 1—2 [8—10]. A working measure (LED) was created and calibrated using an optical radiation power meter based on the substitution method [11], test bench is at Fig. 3, calibration results — in Table 1 and Fig. 4. Test bench for device calibration and an optical radiator are at Fig. 5—6, view of calibrated signal — at Fig. 7. As a result of calibration (Table 2) the dependence of the output signal on LED power supply (Fig. 8) is obtained, and the calibration dependence is shown at Fig. 9. In the test bench for SMC used standardized light filters KNS-01 at a wavelength of 630 nm (Fig. 10a). The calibration curve is calculated as the dependence of the relative coefficient of inverse light dispersion (RCILD) on PW (Fig. 10b, Table 3). The view of output signal is at Fig. 11. As a result of SMC, the limits of permissible absolute error of 2 % in the range of RCILD (15—100) % are defined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信