{"title":"定义在素数上的函数的一些积分的新估计","authors":"Christian Axler","doi":"10.7169/facm/2049","DOIUrl":null,"url":null,"abstract":"In this paper we give new estimates for integrals involving some arithmetic functions defined over prime numbers. The main focus here is on the prime counting function $\\pi(x)$ and the Chebyshev $\\vartheta$-function. Some of these estimates depend on the correctness of the Riemann hypothesis on the nontrivial zeros of the Riemann zeta function $\\zeta(s)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New estimates for some integrals of functions defined over primes\",\"authors\":\"Christian Axler\",\"doi\":\"10.7169/facm/2049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we give new estimates for integrals involving some arithmetic functions defined over prime numbers. The main focus here is on the prime counting function $\\\\pi(x)$ and the Chebyshev $\\\\vartheta$-function. Some of these estimates depend on the correctness of the Riemann hypothesis on the nontrivial zeros of the Riemann zeta function $\\\\zeta(s)$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/2049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/2049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New estimates for some integrals of functions defined over primes
In this paper we give new estimates for integrals involving some arithmetic functions defined over prime numbers. The main focus here is on the prime counting function $\pi(x)$ and the Chebyshev $\vartheta$-function. Some of these estimates depend on the correctness of the Riemann hypothesis on the nontrivial zeros of the Riemann zeta function $\zeta(s)$.