定义在素数上的函数的一些积分的新估计

Pub Date : 2022-01-01 DOI:10.7169/facm/2049
Christian Axler
{"title":"定义在素数上的函数的一些积分的新估计","authors":"Christian Axler","doi":"10.7169/facm/2049","DOIUrl":null,"url":null,"abstract":"In this paper we give new estimates for integrals involving some arithmetic functions defined over prime numbers. The main focus here is on the prime counting function $\\pi(x)$ and the Chebyshev $\\vartheta$-function. Some of these estimates depend on the correctness of the Riemann hypothesis on the nontrivial zeros of the Riemann zeta function $\\zeta(s)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New estimates for some integrals of functions defined over primes\",\"authors\":\"Christian Axler\",\"doi\":\"10.7169/facm/2049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we give new estimates for integrals involving some arithmetic functions defined over prime numbers. The main focus here is on the prime counting function $\\\\pi(x)$ and the Chebyshev $\\\\vartheta$-function. Some of these estimates depend on the correctness of the Riemann hypothesis on the nontrivial zeros of the Riemann zeta function $\\\\zeta(s)$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/2049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/2049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了包含素数上定义的算术函数的积分的新估计。这里的重点是质数计数函数$\pi(x)$和Chebyshev $\vartheta$函数。其中一些估计依赖于黎曼ζ函数$\zeta(s)$的非平凡零点上黎曼假设的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
New estimates for some integrals of functions defined over primes
In this paper we give new estimates for integrals involving some arithmetic functions defined over prime numbers. The main focus here is on the prime counting function $\pi(x)$ and the Chebyshev $\vartheta$-function. Some of these estimates depend on the correctness of the Riemann hypothesis on the nontrivial zeros of the Riemann zeta function $\zeta(s)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信