具有Dirichlet-Laplace先验的贝叶斯层次Copula模型

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Stats Pub Date : 2022-11-01 DOI:10.3390/stats5040063
Paolo Onorati, B. Liseo
{"title":"具有Dirichlet-Laplace先验的贝叶斯层次Copula模型","authors":"Paolo Onorati, B. Liseo","doi":"10.3390/stats5040063","DOIUrl":null,"url":null,"abstract":"We discuss a Bayesian hierarchical copula model for clusters of financial time series. A similar approach has been developed in recent paper. However, the prior distributions proposed there do not always provide a proper posterior. In order to circumvent the problem, we adopt a proper global–local shrinkage prior, which is also able to account for potential dependence structures among different clusters. The performance of the proposed model is presented via simulations and a real data analysis.","PeriodicalId":93142,"journal":{"name":"Stats","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Hierarchical Copula Models with a Dirichlet–Laplace Prior\",\"authors\":\"Paolo Onorati, B. Liseo\",\"doi\":\"10.3390/stats5040063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss a Bayesian hierarchical copula model for clusters of financial time series. A similar approach has been developed in recent paper. However, the prior distributions proposed there do not always provide a proper posterior. In order to circumvent the problem, we adopt a proper global–local shrinkage prior, which is also able to account for potential dependence structures among different clusters. The performance of the proposed model is presented via simulations and a real data analysis.\",\"PeriodicalId\":93142,\"journal\":{\"name\":\"Stats\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stats\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/stats5040063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats5040063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了金融时间序列簇的贝叶斯层次copula模型。最近的论文中也提出了类似的方法。然而,在那里提出的先验分布并不总是提供适当的后验。为了避免这个问题,我们采用了适当的全局-局部收缩先验,它也能够解释不同集群之间的潜在依赖结构。通过仿真和实际数据分析,给出了该模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Hierarchical Copula Models with a Dirichlet–Laplace Prior
We discuss a Bayesian hierarchical copula model for clusters of financial time series. A similar approach has been developed in recent paper. However, the prior distributions proposed there do not always provide a proper posterior. In order to circumvent the problem, we adopt a proper global–local shrinkage prior, which is also able to account for potential dependence structures among different clusters. The performance of the proposed model is presented via simulations and a real data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信