{"title":"1995年至2017年,南极洲泰勒谷的谷底降雪:春季、夏季和秋季","authors":"M. Myers, P. Doran, K. Myers","doi":"10.1017/S0954102022000256","DOIUrl":null,"url":null,"abstract":"Abstract We present an analysis of the 20 year snowfall dataset in Taylor Valley and the results of a new snow cover monitoring study. Snowfall has been measured at four sites in Taylor Valley from 1995 to 2017. We focus on valley-floor snowfall when wind does not exceed 5 m s-1, and we exclude winter from our analysis due to poor data quality. Snowfall averaged 11 mm water equivalent (w.e.) from 1995 to 2017 across all stations and ranged from 1 to 58 mm w.e. Standard deviations ranged from 3 to 17 mm w.e., highlighting the strong interannual variability of snowfall in Taylor Valley. During spring and autumn there is a spatial gradient in snowfall such that the coast received twice as much snowfall as more central and inland stations. We identified a changepoint in 2007 from increasing snowfall (3 mm w.e. yr-1) to decreasing snowfall (1 mm w.e. yr-1), which coincides with a shift from decreasing temperature to no detectable temperature trend. Daily camera imagery from 2007 to 2017 augments the snowfall measurements. The camera imagery revealed a near tripling of the average number of days with snow cover from 37 days between 2006 and 2012 to 106 days with snow cover between 2012 and 2017.","PeriodicalId":50972,"journal":{"name":"Antarctic Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Valley-floor snowfall in Taylor Valley, Antarctica, from 1995 to 2017: spring, summer and autumn\",\"authors\":\"M. Myers, P. Doran, K. Myers\",\"doi\":\"10.1017/S0954102022000256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present an analysis of the 20 year snowfall dataset in Taylor Valley and the results of a new snow cover monitoring study. Snowfall has been measured at four sites in Taylor Valley from 1995 to 2017. We focus on valley-floor snowfall when wind does not exceed 5 m s-1, and we exclude winter from our analysis due to poor data quality. Snowfall averaged 11 mm water equivalent (w.e.) from 1995 to 2017 across all stations and ranged from 1 to 58 mm w.e. Standard deviations ranged from 3 to 17 mm w.e., highlighting the strong interannual variability of snowfall in Taylor Valley. During spring and autumn there is a spatial gradient in snowfall such that the coast received twice as much snowfall as more central and inland stations. We identified a changepoint in 2007 from increasing snowfall (3 mm w.e. yr-1) to decreasing snowfall (1 mm w.e. yr-1), which coincides with a shift from decreasing temperature to no detectable temperature trend. Daily camera imagery from 2007 to 2017 augments the snowfall measurements. The camera imagery revealed a near tripling of the average number of days with snow cover from 37 days between 2006 and 2012 to 106 days with snow cover between 2012 and 2017.\",\"PeriodicalId\":50972,\"journal\":{\"name\":\"Antarctic Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antarctic Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/S0954102022000256\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antarctic Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/S0954102022000256","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Valley-floor snowfall in Taylor Valley, Antarctica, from 1995 to 2017: spring, summer and autumn
Abstract We present an analysis of the 20 year snowfall dataset in Taylor Valley and the results of a new snow cover monitoring study. Snowfall has been measured at four sites in Taylor Valley from 1995 to 2017. We focus on valley-floor snowfall when wind does not exceed 5 m s-1, and we exclude winter from our analysis due to poor data quality. Snowfall averaged 11 mm water equivalent (w.e.) from 1995 to 2017 across all stations and ranged from 1 to 58 mm w.e. Standard deviations ranged from 3 to 17 mm w.e., highlighting the strong interannual variability of snowfall in Taylor Valley. During spring and autumn there is a spatial gradient in snowfall such that the coast received twice as much snowfall as more central and inland stations. We identified a changepoint in 2007 from increasing snowfall (3 mm w.e. yr-1) to decreasing snowfall (1 mm w.e. yr-1), which coincides with a shift from decreasing temperature to no detectable temperature trend. Daily camera imagery from 2007 to 2017 augments the snowfall measurements. The camera imagery revealed a near tripling of the average number of days with snow cover from 37 days between 2006 and 2012 to 106 days with snow cover between 2012 and 2017.
期刊介绍:
Antarctic Science provides a truly international forum for the broad spread of studies that increasingly characterise scientific research in the Antarctic. Whilst emphasising interdisciplinary work, the journal publishes papers from environmental management to biodiversity, from volcanoes to icebergs, and from oceanography to the upper atmosphere. No other journal covers such a wide range of Antarctic scientific studies. The journal attracts papers from all countries currently undertaking Antarctic research. It publishes both review and data papers with no limits on length, two-page short notes on technical developments and recent discoveries, and book reviews. These, together with an editorial discussing broader aspects of science, provide a rich and varied mixture of items to interest researchers in all areas of science. There are no page charges, or charges for colour, to authors publishing in the Journal. One issue each year is normally devoted to a specific theme or papers from a major meeting.