麦克唐纳简化词公式的双射证明

IF 0.7 4区 数学
Sara C. Billey, A. Holroyd, Benjamin Young
{"title":"麦克唐纳简化词公式的双射证明","authors":"Sara C. Billey, A. Holroyd, Benjamin Young","doi":"10.5802/ALCO.23","DOIUrl":null,"url":null,"abstract":"International audience\n \n We describe a bijective proof of Macdonald's reduced word identity using pipe dreams and Little's bumping algorithm. The proof extends to a principal specialization of the identity due to Fomin and Stanley. Our bijective tools also allow us to address a problem posed by Fomin and Kirillov from 1997, using work of Wachs, Lenart and Serrano- Stump.\n","PeriodicalId":55175,"journal":{"name":"Discrete Mathematics and Theoretical Computer Science","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2017-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A bijective proof of Macdonald's reduced word formula\",\"authors\":\"Sara C. Billey, A. Holroyd, Benjamin Young\",\"doi\":\"10.5802/ALCO.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"International audience\\n \\n We describe a bijective proof of Macdonald's reduced word identity using pipe dreams and Little's bumping algorithm. The proof extends to a principal specialization of the identity due to Fomin and Stanley. Our bijective tools also allow us to address a problem posed by Fomin and Kirillov from 1997, using work of Wachs, Lenart and Serrano- Stump.\\n\",\"PeriodicalId\":55175,\"journal\":{\"name\":\"Discrete Mathematics and Theoretical Computer Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2017-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics and Theoretical Computer Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/ALCO.23\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Theoretical Computer Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/ALCO.23","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

国际观众我们使用管道梦和利特尔的碰撞算法描述了麦克唐纳简化词身份的双射证明。这一证明延伸到了福明和斯坦利对身份的主要专门化。我们的双射工具还允许我们使用Wachs、Lenart和Serrano-Stump的工作来解决Fomin和Kirillov从1997年提出的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A bijective proof of Macdonald's reduced word formula
International audience We describe a bijective proof of Macdonald's reduced word identity using pipe dreams and Little's bumping algorithm. The proof extends to a principal specialization of the identity due to Fomin and Stanley. Our bijective tools also allow us to address a problem posed by Fomin and Kirillov from 1997, using work of Wachs, Lenart and Serrano- Stump.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
14.30%
发文量
39
期刊介绍: DMTCS is a open access scientic journal that is online since 1998. We are member of the Free Journal Network. Sections of DMTCS Analysis of Algorithms Automata, Logic and Semantics Combinatorics Discrete Algorithms Distributed Computing and Networking Graph Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信