组$text{PSL}(2,m)$的有效表示

IF 0.7 Q2 MATHEMATICS
O. Stoytchev
{"title":"组$text{PSL}(2,m)$的有效表示","authors":"O. Stoytchev","doi":"10.22108/IJGT.2021.128791.1696","DOIUrl":null,"url":null,"abstract":"dWe exhibit presentations of the Von Dyck groups $D(2, 3, m)‎, ‎ mge 3$‎, ‎in terms of two generators of order $m$ satisfying three relations‎, ‎one of which is Artin's braid relation‎. ‎By dropping the relation which fixes the order of the generators we obtain the universal covering groups of the corresponding Von Dyck groups‎. ‎In the cases $m=3, ‎‎4, 5$‎, ‎these are respectively the double covers of the finite rotational tetrahedral‎, ‎octahedral and icosahedral groups‎. ‎When $mge 6$ we obtain infinite covers of the corresponding infinite Von Dyck groups‎. ‎The interesting cases arise for $mge 7$ when these groups act as discrete groups of isometries of the hyperbolic plane‎. ‎Imposing a suitable third relation we obtain three-relator presentations of $text{PSL}(2,m)$‎. ‎We discover two general formulas presenting these as factors of $D(2, 3, m)$‎. ‎The first one works for any odd $m$ and is essentially equivalent to the shortest known presentation of Sunday cite{Sunday}‎. ‎The second applies to the cases $mequivpm 2 (text{mod} 3)$‎, ‎$m ≢ 11(text{mod} 30)$‎, ‎and is substantively shorter‎. ‎Additionally‎, ‎by random search‎, ‎we find many efficient presentations of‎ ‎finite simple Chevalley groups PSL($2,q$) as factors of $D(2, 3, m)$ where $m$ divides the order of the group‎. ‎The only other simple group that we found in this way is the sporadic Janko group $J_2$‎.","PeriodicalId":43007,"journal":{"name":"International Journal of Group Theory","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On efficient presentations of the groups $text{PSL}(2,m)$\",\"authors\":\"O. Stoytchev\",\"doi\":\"10.22108/IJGT.2021.128791.1696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"dWe exhibit presentations of the Von Dyck groups $D(2, 3, m)‎, ‎ mge 3$‎, ‎in terms of two generators of order $m$ satisfying three relations‎, ‎one of which is Artin's braid relation‎. ‎By dropping the relation which fixes the order of the generators we obtain the universal covering groups of the corresponding Von Dyck groups‎. ‎In the cases $m=3, ‎‎4, 5$‎, ‎these are respectively the double covers of the finite rotational tetrahedral‎, ‎octahedral and icosahedral groups‎. ‎When $mge 6$ we obtain infinite covers of the corresponding infinite Von Dyck groups‎. ‎The interesting cases arise for $mge 7$ when these groups act as discrete groups of isometries of the hyperbolic plane‎. ‎Imposing a suitable third relation we obtain three-relator presentations of $text{PSL}(2,m)$‎. ‎We discover two general formulas presenting these as factors of $D(2, 3, m)$‎. ‎The first one works for any odd $m$ and is essentially equivalent to the shortest known presentation of Sunday cite{Sunday}‎. ‎The second applies to the cases $mequivpm 2 (text{mod} 3)$‎, ‎$m ≢ 11(text{mod} 30)$‎, ‎and is substantively shorter‎. ‎Additionally‎, ‎by random search‎, ‎we find many efficient presentations of‎ ‎finite simple Chevalley groups PSL($2,q$) as factors of $D(2, 3, m)$ where $m$ divides the order of the group‎. ‎The only other simple group that we found in this way is the sporadic Janko group $J_2$‎.\",\"PeriodicalId\":43007,\"journal\":{\"name\":\"International Journal of Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/IJGT.2021.128791.1696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/IJGT.2021.128791.1696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了Von Dyck群$D(2,3, m) $, $ mge 3$, $在两个满足三个关系的$m阶生成元的表达式,其中一个关系是Artin的辫状关系。通过去掉固定生成子序的关系,我们得到了相应的Von Dyck群的全称覆盖群。在$m=3, $ $ 4,5 $ $,这些分别是有限旋转四面体,八面体和二十面体基团的双盖。当$mge 6$时,我们得到相应的无限Von Dyck群的无限覆盖。当这些群作为双曲平面等距的离散群时,出现了有趣的情况。施加一个合适的第三关系,我们得到$text{PSL}(2,m)$™的三关系表示。我们发现了两个一般的公式,将它们表示为$D(2,3, m)$ $。第一个适用于任何奇数$m$,本质上相当于已知的Sunday cite{Sunday}的最短表示。第二种方法适用于以下情况:$mequivpm 2 (text{mod} 3)$™,$m 11(text{mod} 30)$™,并且要短得多。此外,通过随机搜索,我们发现了有限简单Chevalley群PSL($2,q$)作为$D(2,3, m)$的因子的许多有效表示,其中$m$除以群的阶数。我们用这种方法发现的另一个简单群是散在的Janko群$J_2$ $。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On efficient presentations of the groups $text{PSL}(2,m)$
dWe exhibit presentations of the Von Dyck groups $D(2, 3, m)‎, ‎ mge 3$‎, ‎in terms of two generators of order $m$ satisfying three relations‎, ‎one of which is Artin's braid relation‎. ‎By dropping the relation which fixes the order of the generators we obtain the universal covering groups of the corresponding Von Dyck groups‎. ‎In the cases $m=3, ‎‎4, 5$‎, ‎these are respectively the double covers of the finite rotational tetrahedral‎, ‎octahedral and icosahedral groups‎. ‎When $mge 6$ we obtain infinite covers of the corresponding infinite Von Dyck groups‎. ‎The interesting cases arise for $mge 7$ when these groups act as discrete groups of isometries of the hyperbolic plane‎. ‎Imposing a suitable third relation we obtain three-relator presentations of $text{PSL}(2,m)$‎. ‎We discover two general formulas presenting these as factors of $D(2, 3, m)$‎. ‎The first one works for any odd $m$ and is essentially equivalent to the shortest known presentation of Sunday cite{Sunday}‎. ‎The second applies to the cases $mequivpm 2 (text{mod} 3)$‎, ‎$m ≢ 11(text{mod} 30)$‎, ‎and is substantively shorter‎. ‎Additionally‎, ‎by random search‎, ‎we find many efficient presentations of‎ ‎finite simple Chevalley groups PSL($2,q$) as factors of $D(2, 3, m)$ where $m$ divides the order of the group‎. ‎The only other simple group that we found in this way is the sporadic Janko group $J_2$‎.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
1
审稿时长
30 weeks
期刊介绍: International Journal of Group Theory (IJGT) is an international mathematical journal founded in 2011. IJGT carries original research articles in the field of group theory, a branch of algebra. IJGT aims to reflect the latest developments in group theory and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信