{"title":"$\\mathcalH^2的再生核与双曲拉普拉斯算子的径向本征函数","authors":"M. Stoll","doi":"10.7146/MATH.SCAND.A-109674","DOIUrl":null,"url":null,"abstract":"In the paper we characterize the reproducing kernel $\\mathcal {K}_{n,h}$ for the Hardy space $\\mathcal {H}^2$ of hyperbolic harmonic functions on the unit ball $\\mathbb {B}$ in $\\mathbb {R}^n$. Specifically we prove that \\[ \\mathcal {K}_{n,h}(x,y) = \\sum _{\\alpha =0}^\\infty S_{n,\\alpha }(\\lvert x\\rvert )S_{n,\\alpha }(\\lvert y\\rvert ) Z_\\alpha (x,y), \\] where the series converges absolutely and uniformly on $K\\times \\mathbb {B}$ for every compact subset $K$ of $\\mathbb {B}$. In the above, $S_{n,\\alpha }$ is a hypergeometric function and $Z_\\alpha $ is the reproducing kernel of the space of spherical harmonics of degree α. In the paper we prove that \\[ 0\\le \\mathcal K_{n,h}(x,y) \\le \\frac {C_n}{(1-2\\langle x,y\\rangle + \\lvert x \\rvert^2 \\lvert y \\rvert^2)^{n-1}}, \\] where $C_n$ is a constant depending only on $n$. It is known that the diagonal function $\\mathcal K_{n,h}(x,x)$ is a radial eigenfunction of the hyperbolic Laplacian $\\varDelta_h $ on $\\mathbb{B} $ with eigenvalue $\\lambda _2 = 8(n-1)^2$. The result for $n=4$ provides motivation that leads to an explicit characterization of all radial eigenfunctions of $\\varDelta_h $ on $\\mathbb{B} $. Specifically, if $g$ is a radial eigenfunction of $\\varDelta_h $ with eigenvalue $\\lambda _\\alpha = 4(n-1)^2\\alpha (\\alpha -1)$, then \\[ g(r) = g(0) \\frac {p_{n,\\alpha }(r^2)}{(1-r^2)^{(\\alpha -1)(n-1)}}, \\] where $p_{n,\\alpha }$ is again a hypergeometric function. If α is an integer, then $p_{n,\\alpha }(r^2)$ is a polynomial of degree $2(\\alpha -1)(n-1)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The reproducing kernel of $\\\\mathcal H^2$ and radial eigenfunctions of the hyperbolic Laplacian\",\"authors\":\"M. Stoll\",\"doi\":\"10.7146/MATH.SCAND.A-109674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper we characterize the reproducing kernel $\\\\mathcal {K}_{n,h}$ for the Hardy space $\\\\mathcal {H}^2$ of hyperbolic harmonic functions on the unit ball $\\\\mathbb {B}$ in $\\\\mathbb {R}^n$. Specifically we prove that \\\\[ \\\\mathcal {K}_{n,h}(x,y) = \\\\sum _{\\\\alpha =0}^\\\\infty S_{n,\\\\alpha }(\\\\lvert x\\\\rvert )S_{n,\\\\alpha }(\\\\lvert y\\\\rvert ) Z_\\\\alpha (x,y), \\\\] where the series converges absolutely and uniformly on $K\\\\times \\\\mathbb {B}$ for every compact subset $K$ of $\\\\mathbb {B}$. In the above, $S_{n,\\\\alpha }$ is a hypergeometric function and $Z_\\\\alpha $ is the reproducing kernel of the space of spherical harmonics of degree α. In the paper we prove that \\\\[ 0\\\\le \\\\mathcal K_{n,h}(x,y) \\\\le \\\\frac {C_n}{(1-2\\\\langle x,y\\\\rangle + \\\\lvert x \\\\rvert^2 \\\\lvert y \\\\rvert^2)^{n-1}}, \\\\] where $C_n$ is a constant depending only on $n$. It is known that the diagonal function $\\\\mathcal K_{n,h}(x,x)$ is a radial eigenfunction of the hyperbolic Laplacian $\\\\varDelta_h $ on $\\\\mathbb{B} $ with eigenvalue $\\\\lambda _2 = 8(n-1)^2$. The result for $n=4$ provides motivation that leads to an explicit characterization of all radial eigenfunctions of $\\\\varDelta_h $ on $\\\\mathbb{B} $. Specifically, if $g$ is a radial eigenfunction of $\\\\varDelta_h $ with eigenvalue $\\\\lambda _\\\\alpha = 4(n-1)^2\\\\alpha (\\\\alpha -1)$, then \\\\[ g(r) = g(0) \\\\frac {p_{n,\\\\alpha }(r^2)}{(1-r^2)^{(\\\\alpha -1)(n-1)}}, \\\\] where $p_{n,\\\\alpha }$ is again a hypergeometric function. If α is an integer, then $p_{n,\\\\alpha }(r^2)$ is a polynomial of degree $2(\\\\alpha -1)(n-1)$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/MATH.SCAND.A-109674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/MATH.SCAND.A-109674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The reproducing kernel of $\mathcal H^2$ and radial eigenfunctions of the hyperbolic Laplacian
In the paper we characterize the reproducing kernel $\mathcal {K}_{n,h}$ for the Hardy space $\mathcal {H}^2$ of hyperbolic harmonic functions on the unit ball $\mathbb {B}$ in $\mathbb {R}^n$. Specifically we prove that \[ \mathcal {K}_{n,h}(x,y) = \sum _{\alpha =0}^\infty S_{n,\alpha }(\lvert x\rvert )S_{n,\alpha }(\lvert y\rvert ) Z_\alpha (x,y), \] where the series converges absolutely and uniformly on $K\times \mathbb {B}$ for every compact subset $K$ of $\mathbb {B}$. In the above, $S_{n,\alpha }$ is a hypergeometric function and $Z_\alpha $ is the reproducing kernel of the space of spherical harmonics of degree α. In the paper we prove that \[ 0\le \mathcal K_{n,h}(x,y) \le \frac {C_n}{(1-2\langle x,y\rangle + \lvert x \rvert^2 \lvert y \rvert^2)^{n-1}}, \] where $C_n$ is a constant depending only on $n$. It is known that the diagonal function $\mathcal K_{n,h}(x,x)$ is a radial eigenfunction of the hyperbolic Laplacian $\varDelta_h $ on $\mathbb{B} $ with eigenvalue $\lambda _2 = 8(n-1)^2$. The result for $n=4$ provides motivation that leads to an explicit characterization of all radial eigenfunctions of $\varDelta_h $ on $\mathbb{B} $. Specifically, if $g$ is a radial eigenfunction of $\varDelta_h $ with eigenvalue $\lambda _\alpha = 4(n-1)^2\alpha (\alpha -1)$, then \[ g(r) = g(0) \frac {p_{n,\alpha }(r^2)}{(1-r^2)^{(\alpha -1)(n-1)}}, \] where $p_{n,\alpha }$ is again a hypergeometric function. If α is an integer, then $p_{n,\alpha }(r^2)$ is a polynomial of degree $2(\alpha -1)(n-1)$.