$\mathcalH^2的再生核与双曲拉普拉斯算子的径向本征函数

IF 0.3 4区 数学 Q4 MATHEMATICS
M. Stoll
{"title":"$\\mathcalH^2的再生核与双曲拉普拉斯算子的径向本征函数","authors":"M. Stoll","doi":"10.7146/MATH.SCAND.A-109674","DOIUrl":null,"url":null,"abstract":"In the paper we characterize the reproducing kernel $\\mathcal {K}_{n,h}$ for the Hardy space $\\mathcal {H}^2$ of hyperbolic harmonic functions on the unit ball $\\mathbb {B}$ in $\\mathbb {R}^n$. Specifically we prove that \\[ \\mathcal {K}_{n,h}(x,y) = \\sum _{\\alpha =0}^\\infty S_{n,\\alpha }(\\lvert x\\rvert )S_{n,\\alpha }(\\lvert y\\rvert ) Z_\\alpha (x,y), \\] where the series converges absolutely and uniformly on $K\\times \\mathbb {B}$ for every compact subset $K$ of $\\mathbb {B}$. In the above, $S_{n,\\alpha }$ is a hypergeometric function and $Z_\\alpha $ is the reproducing kernel of the space of spherical harmonics of degree α. In the paper we prove that \\[ 0\\le \\mathcal K_{n,h}(x,y) \\le \\frac {C_n}{(1-2\\langle x,y\\rangle + \\lvert x \\rvert^2 \\lvert y \\rvert^2)^{n-1}}, \\] where $C_n$ is a constant depending only on $n$. It is known that the diagonal function $\\mathcal K_{n,h}(x,x)$ is a radial eigenfunction of the hyperbolic Laplacian $\\varDelta_h $ on $\\mathbb{B} $ with eigenvalue $\\lambda _2 = 8(n-1)^2$. The result for $n=4$ provides motivation that leads to an explicit characterization of all radial eigenfunctions of $\\varDelta_h $ on $\\mathbb{B} $. Specifically, if $g$ is a radial eigenfunction of $\\varDelta_h $ with eigenvalue $\\lambda _\\alpha = 4(n-1)^2\\alpha (\\alpha -1)$, then \\[ g(r) = g(0) \\frac {p_{n,\\alpha }(r^2)}{(1-r^2)^{(\\alpha -1)(n-1)}}, \\] where $p_{n,\\alpha }$ is again a hypergeometric function. If α is an integer, then $p_{n,\\alpha }(r^2)$ is a polynomial of degree $2(\\alpha -1)(n-1)$.","PeriodicalId":49873,"journal":{"name":"Mathematica Scandinavica","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The reproducing kernel of $\\\\mathcal H^2$ and radial eigenfunctions of the hyperbolic Laplacian\",\"authors\":\"M. Stoll\",\"doi\":\"10.7146/MATH.SCAND.A-109674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper we characterize the reproducing kernel $\\\\mathcal {K}_{n,h}$ for the Hardy space $\\\\mathcal {H}^2$ of hyperbolic harmonic functions on the unit ball $\\\\mathbb {B}$ in $\\\\mathbb {R}^n$. Specifically we prove that \\\\[ \\\\mathcal {K}_{n,h}(x,y) = \\\\sum _{\\\\alpha =0}^\\\\infty S_{n,\\\\alpha }(\\\\lvert x\\\\rvert )S_{n,\\\\alpha }(\\\\lvert y\\\\rvert ) Z_\\\\alpha (x,y), \\\\] where the series converges absolutely and uniformly on $K\\\\times \\\\mathbb {B}$ for every compact subset $K$ of $\\\\mathbb {B}$. In the above, $S_{n,\\\\alpha }$ is a hypergeometric function and $Z_\\\\alpha $ is the reproducing kernel of the space of spherical harmonics of degree α. In the paper we prove that \\\\[ 0\\\\le \\\\mathcal K_{n,h}(x,y) \\\\le \\\\frac {C_n}{(1-2\\\\langle x,y\\\\rangle + \\\\lvert x \\\\rvert^2 \\\\lvert y \\\\rvert^2)^{n-1}}, \\\\] where $C_n$ is a constant depending only on $n$. It is known that the diagonal function $\\\\mathcal K_{n,h}(x,x)$ is a radial eigenfunction of the hyperbolic Laplacian $\\\\varDelta_h $ on $\\\\mathbb{B} $ with eigenvalue $\\\\lambda _2 = 8(n-1)^2$. The result for $n=4$ provides motivation that leads to an explicit characterization of all radial eigenfunctions of $\\\\varDelta_h $ on $\\\\mathbb{B} $. Specifically, if $g$ is a radial eigenfunction of $\\\\varDelta_h $ with eigenvalue $\\\\lambda _\\\\alpha = 4(n-1)^2\\\\alpha (\\\\alpha -1)$, then \\\\[ g(r) = g(0) \\\\frac {p_{n,\\\\alpha }(r^2)}{(1-r^2)^{(\\\\alpha -1)(n-1)}}, \\\\] where $p_{n,\\\\alpha }$ is again a hypergeometric function. If α is an integer, then $p_{n,\\\\alpha }(r^2)$ is a polynomial of degree $2(\\\\alpha -1)(n-1)$.\",\"PeriodicalId\":49873,\"journal\":{\"name\":\"Mathematica Scandinavica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Scandinavica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/MATH.SCAND.A-109674\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Scandinavica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/MATH.SCAND.A-109674","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们刻画了再生核$\mathcal{K}_对于单位球$\mathbb{B}$上的双曲调和函数的Hardy空间$\mathcal{h}^2$在$\mathbb{R}^n$中。具体来说,我们证明了\[\mathcal{K}_{n,h}(x,y)=\sum_{\alpha=0}^\infty S_{n、\alpha}(\lvert x\rvert)S_}、\alpa}(\ lvert y\ rvert)Z_\alpha(x,y),\]其中对于$\mathbb{B}$的每个紧子集$K$,级数在$K\times\mathbb{B}$上绝对一致收敛。在上文中,$S_{n,\alpha}$是超几何函数,$Z_\alpha$是α度球谐空间的再生核。本文证明了\[0\le\mathcal K_{n,h}(x,y)\le\frac{C_n}{(1-2\langle x,y\rangle+\lvert x\rvert ^2 \lvert y\rvert ^ 2)^{n-1}},其中$C_n$是一个仅依赖于$n$的常数。已知对角函数$\mathcal K_{n,h}(x,x)$是$\mathbb{B}$上双曲拉普拉斯算子$\varDelta_h$的径向本征函数,其特征值为$\lambda _2=8(n-1)^2$。$n=4$的结果提供了导致$\mathbb{B}$上$\varDelta_h$的所有径向本征函数的显式特征化的动机。具体地说,如果$g$是$\varDelta_h$的径向本征函数,其特征值为$\lambda_\alpha=4(n-1)^2 \alpha(\alpha-1)$,则\[g(r)=g(0)\frac{p_ n,\alpha}(r^2)}{(1-r^2)^{(\alpha-1)(n-1。如果α是整数,则$p_{n,\alpha}(r^2)$是次数为$2(\alpha-1)(n-1)$的多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The reproducing kernel of $\mathcal H^2$ and radial eigenfunctions of the hyperbolic Laplacian
In the paper we characterize the reproducing kernel $\mathcal {K}_{n,h}$ for the Hardy space $\mathcal {H}^2$ of hyperbolic harmonic functions on the unit ball $\mathbb {B}$ in $\mathbb {R}^n$. Specifically we prove that \[ \mathcal {K}_{n,h}(x,y) = \sum _{\alpha =0}^\infty S_{n,\alpha }(\lvert x\rvert )S_{n,\alpha }(\lvert y\rvert ) Z_\alpha (x,y), \] where the series converges absolutely and uniformly on $K\times \mathbb {B}$ for every compact subset $K$ of $\mathbb {B}$. In the above, $S_{n,\alpha }$ is a hypergeometric function and $Z_\alpha $ is the reproducing kernel of the space of spherical harmonics of degree α. In the paper we prove that \[ 0\le \mathcal K_{n,h}(x,y) \le \frac {C_n}{(1-2\langle x,y\rangle + \lvert x \rvert^2 \lvert y \rvert^2)^{n-1}}, \] where $C_n$ is a constant depending only on $n$. It is known that the diagonal function $\mathcal K_{n,h}(x,x)$ is a radial eigenfunction of the hyperbolic Laplacian $\varDelta_h $ on $\mathbb{B} $ with eigenvalue $\lambda _2 = 8(n-1)^2$. The result for $n=4$ provides motivation that leads to an explicit characterization of all radial eigenfunctions of $\varDelta_h $ on $\mathbb{B} $. Specifically, if $g$ is a radial eigenfunction of $\varDelta_h $ with eigenvalue $\lambda _\alpha = 4(n-1)^2\alpha (\alpha -1)$, then \[ g(r) = g(0) \frac {p_{n,\alpha }(r^2)}{(1-r^2)^{(\alpha -1)(n-1)}}, \] where $p_{n,\alpha }$ is again a hypergeometric function. If α is an integer, then $p_{n,\alpha }(r^2)$ is a polynomial of degree $2(\alpha -1)(n-1)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematica Scandinavica
Mathematica Scandinavica 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: Mathematica Scandinavica is a peer-reviewed journal in mathematics that has been published regularly since 1953. Mathematica Scandinavica is run on a non-profit basis by the five mathematical societies in Scandinavia. It is the aim of the journal to publish high quality mathematical articles of moderate length. Mathematica Scandinavica publishes about 640 pages per year. For 2020, these will be published as one volume consisting of 3 issues (of 160, 240 and 240 pages, respectively), enabling a slight increase in article pages compared to previous years. The journal aims to publish the first issue by the end of March. Subsequent issues will follow at intervals of approximately 4 months. All back volumes are available in paper and online from 1953. There is free access to online articles more than five years old.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信