F. Ferreira, A. Pereira, I. B. Reis, B. Sasaki, W. Fávaro, N. Durán
{"title":"商品磷酸铵的PXRD定量物相分析及其在生物体系中的应用","authors":"F. Ferreira, A. Pereira, I. B. Reis, B. Sasaki, W. Fávaro, N. Durán","doi":"10.1017/s0885715623000167","DOIUrl":null,"url":null,"abstract":"Although being an old concern, phosphate analysis is still a tremendous challenge. While many different experimental techniques are found in the literature, very few use powder X-ray diffraction (PXRD) patterns for quantitative phase analysis of different phosphate types. Our measurements performed in four commercial samples of diammonium hydrogen phosphate ((NH4)2HPO4) (DAP) show the existence of phosphate contamination mixtures, such as ammonium dihydrogen phosphate (NH4H2PO4) (ADP). The larger the amount of ADP, the larger the microstrain induced in the DAP phase, which impacts both the aggregation of the nanoparticles in solution and the final anticancer activity of the nanostructure. This study shows that PXRD is an excellent technique for quantitative phase analysis to determine the presence and amount of phosphate contamination in diammonium hydrogen phosphate samples.","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantitative phase analysis of commercial ammonium phosphates by PXRD for application in biological systems\",\"authors\":\"F. Ferreira, A. Pereira, I. B. Reis, B. Sasaki, W. Fávaro, N. Durán\",\"doi\":\"10.1017/s0885715623000167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although being an old concern, phosphate analysis is still a tremendous challenge. While many different experimental techniques are found in the literature, very few use powder X-ray diffraction (PXRD) patterns for quantitative phase analysis of different phosphate types. Our measurements performed in four commercial samples of diammonium hydrogen phosphate ((NH4)2HPO4) (DAP) show the existence of phosphate contamination mixtures, such as ammonium dihydrogen phosphate (NH4H2PO4) (ADP). The larger the amount of ADP, the larger the microstrain induced in the DAP phase, which impacts both the aggregation of the nanoparticles in solution and the final anticancer activity of the nanostructure. This study shows that PXRD is an excellent technique for quantitative phase analysis to determine the presence and amount of phosphate contamination in diammonium hydrogen phosphate samples.\",\"PeriodicalId\":20333,\"journal\":{\"name\":\"Powder Diffraction\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Diffraction\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1017/s0885715623000167\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Diffraction","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1017/s0885715623000167","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Quantitative phase analysis of commercial ammonium phosphates by PXRD for application in biological systems
Although being an old concern, phosphate analysis is still a tremendous challenge. While many different experimental techniques are found in the literature, very few use powder X-ray diffraction (PXRD) patterns for quantitative phase analysis of different phosphate types. Our measurements performed in four commercial samples of diammonium hydrogen phosphate ((NH4)2HPO4) (DAP) show the existence of phosphate contamination mixtures, such as ammonium dihydrogen phosphate (NH4H2PO4) (ADP). The larger the amount of ADP, the larger the microstrain induced in the DAP phase, which impacts both the aggregation of the nanoparticles in solution and the final anticancer activity of the nanostructure. This study shows that PXRD is an excellent technique for quantitative phase analysis to determine the presence and amount of phosphate contamination in diammonium hydrogen phosphate samples.
期刊介绍:
Powder Diffraction is a quarterly journal publishing articles, both experimental and theoretical, on the use of powder diffraction and related techniques for the characterization of crystalline materials. It is published by Cambridge University Press (CUP) for the International Centre for Diffraction Data (ICDD).