双曲空间上的非线性热方程:整体存在性和有限时间爆破

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
D. Ganguly, D. Karmakar, Saikat Mazumdar
{"title":"双曲空间上的非线性热方程:整体存在性和有限时间爆破","authors":"D. Ganguly, D. Karmakar, Saikat Mazumdar","doi":"10.57262/ade028-0910-779","DOIUrl":null,"url":null,"abstract":"We consider the following Cauchy problem for the semi linear heat equation on the hyperbolic space: \\begin{align}\\label{abs:eqn} \\left\\{\\begin{array}{ll} \\partial_{t}u=\\Delta_{\\mathbb{H}^{n}} u+ f(u, t)&\\hbox{ in }~ \\mathbb{H}^{n}\\times (0, T),\\\\ \\\\ \\quad u =u_{0}&\\hbox{ in }~ \\mathbb{H}^{n}\\times \\{0\\}. \\end{array}\\right. \\end{align} We study Fujita phenomena for the non-negative initial data $u_0$ belonging to $C(\\mathbb{H}^{n}) \\cap L^{\\infty}(\\mathbb{H}^{n})$ and for different choices of $f$ of the form $f(u,t) = h(t)g(u).$ It is well-known that for power nonlinearities in $u,$ the power weight $h(t) = t^q$ is sub-critical in the sense that non-negative global solutions exist for small initial data. On the other hand, it exhibits Fujita phenomena for the exponential weight $h(t) = e^{\\mu t},$ i.e. there exists a critical exponent $\\mu^*$ such that if $\\mu>\\mu^*$ then all non-negative solutions blow-up in finite time and if $\\mu \\leq \\mu^*$ there exists non-negative global solutions for small initial data. One of the main objectives of this article is to find an appropriate nonlinearity in $u$ so that the above mentioned Cauchy problem with the power weight $h(t) = t^q$ does exhibit Fujita phenomena. In the remaining part of this article, we study Fujita phenomena for exponential nonlinearity in $u.$ We further generalize some of these results to Cartan-Hadamard manifolds.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-linear heat equation on the Hyperbolic space: Global existence and finite-time Blow-up\",\"authors\":\"D. Ganguly, D. Karmakar, Saikat Mazumdar\",\"doi\":\"10.57262/ade028-0910-779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the following Cauchy problem for the semi linear heat equation on the hyperbolic space: \\\\begin{align}\\\\label{abs:eqn} \\\\left\\\\{\\\\begin{array}{ll} \\\\partial_{t}u=\\\\Delta_{\\\\mathbb{H}^{n}} u+ f(u, t)&\\\\hbox{ in }~ \\\\mathbb{H}^{n}\\\\times (0, T),\\\\\\\\ \\\\\\\\ \\\\quad u =u_{0}&\\\\hbox{ in }~ \\\\mathbb{H}^{n}\\\\times \\\\{0\\\\}. \\\\end{array}\\\\right. \\\\end{align} We study Fujita phenomena for the non-negative initial data $u_0$ belonging to $C(\\\\mathbb{H}^{n}) \\\\cap L^{\\\\infty}(\\\\mathbb{H}^{n})$ and for different choices of $f$ of the form $f(u,t) = h(t)g(u).$ It is well-known that for power nonlinearities in $u,$ the power weight $h(t) = t^q$ is sub-critical in the sense that non-negative global solutions exist for small initial data. On the other hand, it exhibits Fujita phenomena for the exponential weight $h(t) = e^{\\\\mu t},$ i.e. there exists a critical exponent $\\\\mu^*$ such that if $\\\\mu>\\\\mu^*$ then all non-negative solutions blow-up in finite time and if $\\\\mu \\\\leq \\\\mu^*$ there exists non-negative global solutions for small initial data. One of the main objectives of this article is to find an appropriate nonlinearity in $u$ so that the above mentioned Cauchy problem with the power weight $h(t) = t^q$ does exhibit Fujita phenomena. In the remaining part of this article, we study Fujita phenomena for exponential nonlinearity in $u.$ We further generalize some of these results to Cartan-Hadamard manifolds.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/ade028-0910-779\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade028-0910-779","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了双曲空间上半线性热方程的柯西问题:\begin{align}\label{abs:eqn} \left\{\begin{array}{ll} \partial_{t}u=\Delta_{\mathbb{H}^{n}} u+ f(u, t)&\hbox{ in }~ \mathbb{H}^{n}\times (0, T),\\ \\ \quad u =u_{0}&\hbox{ in }~ \mathbb{H}^{n}\times \{0\}. \end{array}\right. \end{align}对于属于$C(\mathbb{H}^{n}) \cap L^{\infty}(\mathbb{H}^{n})$的非负初始数据$u_0$和形式$f(u,t) = h(t)g(u).$的$f$的不同选择,我们研究了Fujita现象。众所周知,对于$u,$中的幂非线性,幂权$h(t) = t^q$是次临界的,因为对于小初始数据存在非负全局解。另一方面,对于指数权$h(t) = e^{\mu t},$,它表现出Fujita现象,即存在一个临界指数$\mu^*$,如果$\mu>\mu^*$则所有非负解在有限时间内爆炸,如果$\mu \leq \mu^*$存在小初始数据的非负全局解。本文的主要目标之一是在$u$中找到一个适当的非线性,以便上面提到的具有功率权重$h(t) = t^q$的柯西问题确实表现出藤田现象。在本文的剩余部分,我们研究了$u.$中指数非线性的Fujita现象,并进一步将这些结果推广到Cartan-Hadamard流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-linear heat equation on the Hyperbolic space: Global existence and finite-time Blow-up
We consider the following Cauchy problem for the semi linear heat equation on the hyperbolic space: \begin{align}\label{abs:eqn} \left\{\begin{array}{ll} \partial_{t}u=\Delta_{\mathbb{H}^{n}} u+ f(u, t)&\hbox{ in }~ \mathbb{H}^{n}\times (0, T),\\ \\ \quad u =u_{0}&\hbox{ in }~ \mathbb{H}^{n}\times \{0\}. \end{array}\right. \end{align} We study Fujita phenomena for the non-negative initial data $u_0$ belonging to $C(\mathbb{H}^{n}) \cap L^{\infty}(\mathbb{H}^{n})$ and for different choices of $f$ of the form $f(u,t) = h(t)g(u).$ It is well-known that for power nonlinearities in $u,$ the power weight $h(t) = t^q$ is sub-critical in the sense that non-negative global solutions exist for small initial data. On the other hand, it exhibits Fujita phenomena for the exponential weight $h(t) = e^{\mu t},$ i.e. there exists a critical exponent $\mu^*$ such that if $\mu>\mu^*$ then all non-negative solutions blow-up in finite time and if $\mu \leq \mu^*$ there exists non-negative global solutions for small initial data. One of the main objectives of this article is to find an appropriate nonlinearity in $u$ so that the above mentioned Cauchy problem with the power weight $h(t) = t^q$ does exhibit Fujita phenomena. In the remaining part of this article, we study Fujita phenomena for exponential nonlinearity in $u.$ We further generalize some of these results to Cartan-Hadamard manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信