Dong Cui, Ying-chuan Wu, Xiaohui Xie, Guanfei Tian, Guantong Han, Yi Wan, K. Zheng, Wenting Li
{"title":"新型浸辅层析成像技术研究3d打印砂浆微观结构","authors":"Dong Cui, Ying-chuan Wu, Xiaohui Xie, Guanfei Tian, Guantong Han, Yi Wan, K. Zheng, Wenting Li","doi":"10.1080/21650373.2023.2184430","DOIUrl":null,"url":null,"abstract":"The microstructure of a 3D-printed mortar was investigated in present study. To enhance the density contrast between sand and cementitious slurry, a novel leaching strategy was used as an auxiliary method, based on which the spatial dispersion of sands in 3D-printed mortar was rendered. Meanwhile, to alleviate the problem of CT’s limited resolution, X-ray attenuation method (XRAM) was introduced in this study to investigate the spatial distribution of local porosity in 3D-printed mortar. Besides, focusing on single filaments, the upper part of the filaments presented lower sand rate and higher porosity than the lower part, and the difference between the filaments located near the top of 3D-printed mortar was more significant. Finally, based on the sliding method, the interlayer width, average porosity and average sand ratio of 3D-printed mortar were estimated as 640 21.9% and 43.1%, respectively. The research results would deepen the understanding of 3D-printed concrete.","PeriodicalId":48521,"journal":{"name":"Journal of Sustainable Cement-Based Materials","volume":"12 1","pages":"818 - 831"},"PeriodicalIF":4.7000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on the microstructure of a 3D-printed mortar through a novel leaching-subsidiary tomography\",\"authors\":\"Dong Cui, Ying-chuan Wu, Xiaohui Xie, Guanfei Tian, Guantong Han, Yi Wan, K. Zheng, Wenting Li\",\"doi\":\"10.1080/21650373.2023.2184430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The microstructure of a 3D-printed mortar was investigated in present study. To enhance the density contrast between sand and cementitious slurry, a novel leaching strategy was used as an auxiliary method, based on which the spatial dispersion of sands in 3D-printed mortar was rendered. Meanwhile, to alleviate the problem of CT’s limited resolution, X-ray attenuation method (XRAM) was introduced in this study to investigate the spatial distribution of local porosity in 3D-printed mortar. Besides, focusing on single filaments, the upper part of the filaments presented lower sand rate and higher porosity than the lower part, and the difference between the filaments located near the top of 3D-printed mortar was more significant. Finally, based on the sliding method, the interlayer width, average porosity and average sand ratio of 3D-printed mortar were estimated as 640 21.9% and 43.1%, respectively. The research results would deepen the understanding of 3D-printed concrete.\",\"PeriodicalId\":48521,\"journal\":{\"name\":\"Journal of Sustainable Cement-Based Materials\",\"volume\":\"12 1\",\"pages\":\"818 - 831\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Cement-Based Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21650373.2023.2184430\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Cement-Based Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21650373.2023.2184430","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Investigation on the microstructure of a 3D-printed mortar through a novel leaching-subsidiary tomography
The microstructure of a 3D-printed mortar was investigated in present study. To enhance the density contrast between sand and cementitious slurry, a novel leaching strategy was used as an auxiliary method, based on which the spatial dispersion of sands in 3D-printed mortar was rendered. Meanwhile, to alleviate the problem of CT’s limited resolution, X-ray attenuation method (XRAM) was introduced in this study to investigate the spatial distribution of local porosity in 3D-printed mortar. Besides, focusing on single filaments, the upper part of the filaments presented lower sand rate and higher porosity than the lower part, and the difference between the filaments located near the top of 3D-printed mortar was more significant. Finally, based on the sliding method, the interlayer width, average porosity and average sand ratio of 3D-printed mortar were estimated as 640 21.9% and 43.1%, respectively. The research results would deepen the understanding of 3D-printed concrete.
期刊介绍:
The Journal of Sustainable Cement-Based Materials aims to publish theoretical and applied researches on materials, products and structures that incorporate cement. The journal is a forum for discussion of research on manufacture, hydration and performance of cement-based materials; novel experimental techniques; the latest analytical and modelling methods; the examination and the diagnosis of real cement and concrete structures; and the potential for improved cement-based materials. The journal welcomes original research papers, major reviews, rapid communications and selected conference papers. The Journal of Sustainable Cement-Based Materials covers a wide range of topics within its subject category, including but are not limited to: • raw materials and manufacture of cement • mixing, rheology and hydration • admixtures • structural characteristics and performance of cement-based materials • characterisation techniques and modeling • use of fibre in cement based-materials • degradation and repair of cement-based materials • novel testing techniques and applications • waste management