通过保留谱半径的行和展开的边界

IF 0.7 4区 数学 Q2 Mathematics
Joseph P. Stover
{"title":"通过保留谱半径的行和展开的边界","authors":"Joseph P. Stover","doi":"10.13001/ela.2022.6981","DOIUrl":null,"url":null,"abstract":"We show a simple method for constructing larger dimension nonnegative matrices with somewhat arbitrary entries which can be irreducible or reducible but preserving the spectral radius via row sum expansions. This yields a sufficient criteria for two square nonnegative matrices of arbitrary dimension to have the same spectral radius, a way to compare spectral radii of two arbitrary square nonnegative matrices, and a way to derive new upper and lower bounds on the spectral radius which give the standard row sum bounds as a special case.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds via spectral radius-preserving row sum expansions\",\"authors\":\"Joseph P. Stover\",\"doi\":\"10.13001/ela.2022.6981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show a simple method for constructing larger dimension nonnegative matrices with somewhat arbitrary entries which can be irreducible or reducible but preserving the spectral radius via row sum expansions. This yields a sufficient criteria for two square nonnegative matrices of arbitrary dimension to have the same spectral radius, a way to compare spectral radii of two arbitrary square nonnegative matrices, and a way to derive new upper and lower bounds on the spectral radius which give the standard row sum bounds as a special case.\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2022.6981\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.6981","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了一种构造具有一定任意项的大维非负矩阵的简单方法,该矩阵可以是不可约或可约的,但通过行和展开保持谱半径。这给出了两个任意维数的平方非负矩阵具有相同谱半径的充分准则,一种比较两个任意平方非负阵的谱半径的方法,以及一种导出谱半径新的上界和下界的方法,作为特例给出了标准行和界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounds via spectral radius-preserving row sum expansions
We show a simple method for constructing larger dimension nonnegative matrices with somewhat arbitrary entries which can be irreducible or reducible but preserving the spectral radius via row sum expansions. This yields a sufficient criteria for two square nonnegative matrices of arbitrary dimension to have the same spectral radius, a way to compare spectral radii of two arbitrary square nonnegative matrices, and a way to derive new upper and lower bounds on the spectral radius which give the standard row sum bounds as a special case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信