David J. Gaebler, M. Panaggio, Timothy J. Pennings
{"title":"离散腕时线","authors":"David J. Gaebler, M. Panaggio, Timothy J. Pennings","doi":"10.1080/0025570X.2023.2231836","DOIUrl":null,"url":null,"abstract":"Summary A discrete brachistochrone is the fastest piecewise linear ramp between fixed endpoints with a given number of segments. This article introduces a new conceptual framework for discrete brachistochrones, proves their two fundamental symmetry properties, and examines the manner in which they converge to the cycloid (the well-known continuous brachistochrone) as the number of sides tends to infinity.","PeriodicalId":18344,"journal":{"name":"Mathematics Magazine","volume":"96 1","pages":"376 - 390"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Discrete Brachistochrone\",\"authors\":\"David J. Gaebler, M. Panaggio, Timothy J. Pennings\",\"doi\":\"10.1080/0025570X.2023.2231836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary A discrete brachistochrone is the fastest piecewise linear ramp between fixed endpoints with a given number of segments. This article introduces a new conceptual framework for discrete brachistochrones, proves their two fundamental symmetry properties, and examines the manner in which they converge to the cycloid (the well-known continuous brachistochrone) as the number of sides tends to infinity.\",\"PeriodicalId\":18344,\"journal\":{\"name\":\"Mathematics Magazine\",\"volume\":\"96 1\",\"pages\":\"376 - 390\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0025570X.2023.2231836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0025570X.2023.2231836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Summary A discrete brachistochrone is the fastest piecewise linear ramp between fixed endpoints with a given number of segments. This article introduces a new conceptual framework for discrete brachistochrones, proves their two fundamental symmetry properties, and examines the manner in which they converge to the cycloid (the well-known continuous brachistochrone) as the number of sides tends to infinity.