离散腕时线

Q4 Mathematics
David J. Gaebler, M. Panaggio, Timothy J. Pennings
{"title":"离散腕时线","authors":"David J. Gaebler, M. Panaggio, Timothy J. Pennings","doi":"10.1080/0025570X.2023.2231836","DOIUrl":null,"url":null,"abstract":"Summary A discrete brachistochrone is the fastest piecewise linear ramp between fixed endpoints with a given number of segments. This article introduces a new conceptual framework for discrete brachistochrones, proves their two fundamental symmetry properties, and examines the manner in which they converge to the cycloid (the well-known continuous brachistochrone) as the number of sides tends to infinity.","PeriodicalId":18344,"journal":{"name":"Mathematics Magazine","volume":"96 1","pages":"376 - 390"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Discrete Brachistochrone\",\"authors\":\"David J. Gaebler, M. Panaggio, Timothy J. Pennings\",\"doi\":\"10.1080/0025570X.2023.2231836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary A discrete brachistochrone is the fastest piecewise linear ramp between fixed endpoints with a given number of segments. This article introduces a new conceptual framework for discrete brachistochrones, proves their two fundamental symmetry properties, and examines the manner in which they converge to the cycloid (the well-known continuous brachistochrone) as the number of sides tends to infinity.\",\"PeriodicalId\":18344,\"journal\":{\"name\":\"Mathematics Magazine\",\"volume\":\"96 1\",\"pages\":\"376 - 390\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0025570X.2023.2231836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0025570X.2023.2231836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要离散腕时是具有给定段数的固定端点之间最快的分段线性斜坡。本文介绍了离散腕时的一个新概念框架,证明了它们的两个基本对称性,并考察了当边数趋于无穷大时,它们收敛于摆线(著名的连续腕时)的方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Discrete Brachistochrone
Summary A discrete brachistochrone is the fastest piecewise linear ramp between fixed endpoints with a given number of segments. This article introduces a new conceptual framework for discrete brachistochrones, proves their two fundamental symmetry properties, and examines the manner in which they converge to the cycloid (the well-known continuous brachistochrone) as the number of sides tends to infinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics Magazine
Mathematics Magazine Mathematics-Mathematics (all)
CiteScore
0.20
自引率
0.00%
发文量
68
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信