D. Millar, M. Mennu, K. Upadhyay, C. Morley, P. Ifju
{"title":"一种改进的软胶状和弹性材料的直接剪切表征技术","authors":"D. Millar, M. Mennu, K. Upadhyay, C. Morley, P. Ifju","doi":"10.1111/str.12383","DOIUrl":null,"url":null,"abstract":"Soft materials such as hydrogels and elastomers exhibit very low stiffness and strength as well as large deformations, which makes their mechanical characterisation extremely difficult through conventional methods. This paper presents a novel experimental technique for the mechanical shear property characterisation of these materials. Agarose hydrogels were chosen as a model material for this study. The new in‐plane shear test method incorporates 3‐D‐printed acrylonitrile butadiene styrene (ABS) grips for specimen mounting and digital image correlation (DIC) for full‐field strain measurement on both sides of the specimen gauge section. These grips utilise barb‐like pegs to secure the specimen while load is applied. In order to evaluate the methodology, four concentrations of agarose hydrogel (4.0%, 2.5%, 1.5%, and 0.5% wt./solvent volume) were tested. Results for the agarose hydrogel demonstrated excellent repeatability. The obtained shear moduli show a monotonic increase with gel concentration. Furthermore, the range of shear moduli applicable to the novel testing method was determined.","PeriodicalId":51176,"journal":{"name":"Strain","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/str.12383","citationCount":"1","resultStr":"{\"title\":\"An improved direct shear characterisation technique for soft gelatinous and elastomeric materials\",\"authors\":\"D. Millar, M. Mennu, K. Upadhyay, C. Morley, P. Ifju\",\"doi\":\"10.1111/str.12383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soft materials such as hydrogels and elastomers exhibit very low stiffness and strength as well as large deformations, which makes their mechanical characterisation extremely difficult through conventional methods. This paper presents a novel experimental technique for the mechanical shear property characterisation of these materials. Agarose hydrogels were chosen as a model material for this study. The new in‐plane shear test method incorporates 3‐D‐printed acrylonitrile butadiene styrene (ABS) grips for specimen mounting and digital image correlation (DIC) for full‐field strain measurement on both sides of the specimen gauge section. These grips utilise barb‐like pegs to secure the specimen while load is applied. In order to evaluate the methodology, four concentrations of agarose hydrogel (4.0%, 2.5%, 1.5%, and 0.5% wt./solvent volume) were tested. Results for the agarose hydrogel demonstrated excellent repeatability. The obtained shear moduli show a monotonic increase with gel concentration. Furthermore, the range of shear moduli applicable to the novel testing method was determined.\",\"PeriodicalId\":51176,\"journal\":{\"name\":\"Strain\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/str.12383\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strain\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1111/str.12383\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strain","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/str.12383","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
An improved direct shear characterisation technique for soft gelatinous and elastomeric materials
Soft materials such as hydrogels and elastomers exhibit very low stiffness and strength as well as large deformations, which makes their mechanical characterisation extremely difficult through conventional methods. This paper presents a novel experimental technique for the mechanical shear property characterisation of these materials. Agarose hydrogels were chosen as a model material for this study. The new in‐plane shear test method incorporates 3‐D‐printed acrylonitrile butadiene styrene (ABS) grips for specimen mounting and digital image correlation (DIC) for full‐field strain measurement on both sides of the specimen gauge section. These grips utilise barb‐like pegs to secure the specimen while load is applied. In order to evaluate the methodology, four concentrations of agarose hydrogel (4.0%, 2.5%, 1.5%, and 0.5% wt./solvent volume) were tested. Results for the agarose hydrogel demonstrated excellent repeatability. The obtained shear moduli show a monotonic increase with gel concentration. Furthermore, the range of shear moduli applicable to the novel testing method was determined.
期刊介绍:
Strain is an international journal that contains contributions from leading-edge research on the measurement of the mechanical behaviour of structures and systems. Strain only accepts contributions with sufficient novelty in the design, implementation, and/or validation of experimental methodologies to characterize materials, structures, and systems; i.e. contributions that are limited to the application of established methodologies are outside of the scope of the journal. The journal includes papers from all engineering disciplines that deal with material behaviour and degradation under load, structural design and measurement techniques. Although the thrust of the journal is experimental, numerical simulations and validation are included in the coverage.
Strain welcomes papers that deal with novel work in the following areas:
experimental techniques
non-destructive evaluation techniques
numerical analysis, simulation and validation
residual stress measurement techniques
design of composite structures and components
impact behaviour of materials and structures
signal and image processing
transducer and sensor design
structural health monitoring
biomechanics
extreme environment
micro- and nano-scale testing method.