Miguel Rodríguez Jara, Andrea Vergara-Gómez, Alejandra Mondaca-Saavedra, Pablo Gregori Huerta
{"title":"8 - 9岁学生的非常规问题解决工作坊:个案研究","authors":"Miguel Rodríguez Jara, Andrea Vergara-Gómez, Alejandra Mondaca-Saavedra, Pablo Gregori Huerta","doi":"10.15359/ru.37-1.28","DOIUrl":null,"url":null,"abstract":"[Objetivo] Caracterizar las heurísticas utilizadas por estudiantes de entre 8 y 9 años, al enfrentar cuatro problemas no rutinarios que promueven el desarrollo del pensamiento aritmético desde dos perspectivas: la distribución de números bajo una condición gráfica y el uso de operaciones aritméticas en el sistema decimal posicional. [Metodología] El análisis incluyó la elaboración de categorías que permitieron caracterizar a priori las heurísticas que podrían surgir en la resolución de los distintos problemas. Estas categorías fueron utilizadas para implementar un enfoque metodológico mixto, con un alcance exploratorio y descriptivo. El análisis cualitativo se realiza través de un estudio de caso que permite identificar desempeños claves a partir de las producciones escritas de los estudiantes. El análisis cuantitativo se realiza a través de un análisis implicativo, que incluye un árbol de similaridad y la identificación de clases significativas. [Resultados] Se evidencia que el uso de heurísticas simples en la resolución de problemas aritméticos no rutinarios favorece la búsqueda de soluciones parciales y se confirma la presencia persistente de algunas características del razonamiento heurístico, como la atención, la reducción y el cambio de supuestos. Además, se identifican relaciones implicativas entre algunas heurísticas que comparten características comunes, según el tipo de problema. [Conclusiones] Los alcances de este estudio ponen de manifiesto que, incluso en respuestas erróneas o incompletas, es posible reconocer procesos lógicos de elaboración de respuestas parciales y acercamientos intuitivos, que resultan consistentes con la acción de simplificar o facilitar la búsqueda de una solución.","PeriodicalId":42209,"journal":{"name":"Uniciencia","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taller de resolución de problemas no rutinarios para estudiantes de 8 a 9 años: un estudio de caso\",\"authors\":\"Miguel Rodríguez Jara, Andrea Vergara-Gómez, Alejandra Mondaca-Saavedra, Pablo Gregori Huerta\",\"doi\":\"10.15359/ru.37-1.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"[Objetivo] Caracterizar las heurísticas utilizadas por estudiantes de entre 8 y 9 años, al enfrentar cuatro problemas no rutinarios que promueven el desarrollo del pensamiento aritmético desde dos perspectivas: la distribución de números bajo una condición gráfica y el uso de operaciones aritméticas en el sistema decimal posicional. [Metodología] El análisis incluyó la elaboración de categorías que permitieron caracterizar a priori las heurísticas que podrían surgir en la resolución de los distintos problemas. Estas categorías fueron utilizadas para implementar un enfoque metodológico mixto, con un alcance exploratorio y descriptivo. El análisis cualitativo se realiza través de un estudio de caso que permite identificar desempeños claves a partir de las producciones escritas de los estudiantes. El análisis cuantitativo se realiza a través de un análisis implicativo, que incluye un árbol de similaridad y la identificación de clases significativas. [Resultados] Se evidencia que el uso de heurísticas simples en la resolución de problemas aritméticos no rutinarios favorece la búsqueda de soluciones parciales y se confirma la presencia persistente de algunas características del razonamiento heurístico, como la atención, la reducción y el cambio de supuestos. Además, se identifican relaciones implicativas entre algunas heurísticas que comparten características comunes, según el tipo de problema. [Conclusiones] Los alcances de este estudio ponen de manifiesto que, incluso en respuestas erróneas o incompletas, es posible reconocer procesos lógicos de elaboración de respuestas parciales y acercamientos intuitivos, que resultan consistentes con la acción de simplificar o facilitar la búsqueda de una solución.\",\"PeriodicalId\":42209,\"journal\":{\"name\":\"Uniciencia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uniciencia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15359/ru.37-1.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniciencia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15359/ru.37-1.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Taller de resolución de problemas no rutinarios para estudiantes de 8 a 9 años: un estudio de caso
[Objetivo] Caracterizar las heurísticas utilizadas por estudiantes de entre 8 y 9 años, al enfrentar cuatro problemas no rutinarios que promueven el desarrollo del pensamiento aritmético desde dos perspectivas: la distribución de números bajo una condición gráfica y el uso de operaciones aritméticas en el sistema decimal posicional. [Metodología] El análisis incluyó la elaboración de categorías que permitieron caracterizar a priori las heurísticas que podrían surgir en la resolución de los distintos problemas. Estas categorías fueron utilizadas para implementar un enfoque metodológico mixto, con un alcance exploratorio y descriptivo. El análisis cualitativo se realiza través de un estudio de caso que permite identificar desempeños claves a partir de las producciones escritas de los estudiantes. El análisis cuantitativo se realiza a través de un análisis implicativo, que incluye un árbol de similaridad y la identificación de clases significativas. [Resultados] Se evidencia que el uso de heurísticas simples en la resolución de problemas aritméticos no rutinarios favorece la búsqueda de soluciones parciales y se confirma la presencia persistente de algunas características del razonamiento heurístico, como la atención, la reducción y el cambio de supuestos. Además, se identifican relaciones implicativas entre algunas heurísticas que comparten características comunes, según el tipo de problema. [Conclusiones] Los alcances de este estudio ponen de manifiesto que, incluso en respuestas erróneas o incompletas, es posible reconocer procesos lógicos de elaboración de respuestas parciales y acercamientos intuitivos, que resultan consistentes con la acción de simplificar o facilitar la búsqueda de una solución.