{"title":"近红外光谱法判别焙烤巧克力制品中的中心成分","authors":"Joel B. Johnson","doi":"10.1177/09670335221085616","DOIUrl":null,"url":null,"abstract":"Non-destructively identifying the centre composition of panned chocolate goods may be useful in quality assurance settings. However, no studies to date have investigated this topic. In this study, near infrared spectra (1000–2500 nm) were collected from chocolate-coated peanuts and chocolate-coated sultanas (n = 170 of each) in order to investigate the prospect of non-invasively detecting the composition of the centre. Principal component analysis confirmed that the spectra of these samples were distinct from one another. The partial least squares discriminant analysis (PLS-DA) model showed a high level of separation between chocolate-coated peanuts and sultanas in the training set (R2 = 0.95; RPD = 4.4). Discrimination between peanut and sultana samples from an independent test set was also possible, although with slightly less distinct separation between the sample types. A soft independent modelling by class analogy model was also able to differentiate between the two sample types, albeit with higher levels of misclassification compared to PLS-DA. Incorporating samples from different manufacturers may be useful for improving the broader applicability of the model.","PeriodicalId":16551,"journal":{"name":"Journal of Near Infrared Spectroscopy","volume":"30 1","pages":"130 - 137"},"PeriodicalIF":1.6000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discrimination of centre composition in panned chocolate goods using near infrared spectroscopy\",\"authors\":\"Joel B. Johnson\",\"doi\":\"10.1177/09670335221085616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-destructively identifying the centre composition of panned chocolate goods may be useful in quality assurance settings. However, no studies to date have investigated this topic. In this study, near infrared spectra (1000–2500 nm) were collected from chocolate-coated peanuts and chocolate-coated sultanas (n = 170 of each) in order to investigate the prospect of non-invasively detecting the composition of the centre. Principal component analysis confirmed that the spectra of these samples were distinct from one another. The partial least squares discriminant analysis (PLS-DA) model showed a high level of separation between chocolate-coated peanuts and sultanas in the training set (R2 = 0.95; RPD = 4.4). Discrimination between peanut and sultana samples from an independent test set was also possible, although with slightly less distinct separation between the sample types. A soft independent modelling by class analogy model was also able to differentiate between the two sample types, albeit with higher levels of misclassification compared to PLS-DA. Incorporating samples from different manufacturers may be useful for improving the broader applicability of the model.\",\"PeriodicalId\":16551,\"journal\":{\"name\":\"Journal of Near Infrared Spectroscopy\",\"volume\":\"30 1\",\"pages\":\"130 - 137\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Near Infrared Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/09670335221085616\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Near Infrared Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09670335221085616","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Discrimination of centre composition in panned chocolate goods using near infrared spectroscopy
Non-destructively identifying the centre composition of panned chocolate goods may be useful in quality assurance settings. However, no studies to date have investigated this topic. In this study, near infrared spectra (1000–2500 nm) were collected from chocolate-coated peanuts and chocolate-coated sultanas (n = 170 of each) in order to investigate the prospect of non-invasively detecting the composition of the centre. Principal component analysis confirmed that the spectra of these samples were distinct from one another. The partial least squares discriminant analysis (PLS-DA) model showed a high level of separation between chocolate-coated peanuts and sultanas in the training set (R2 = 0.95; RPD = 4.4). Discrimination between peanut and sultana samples from an independent test set was also possible, although with slightly less distinct separation between the sample types. A soft independent modelling by class analogy model was also able to differentiate between the two sample types, albeit with higher levels of misclassification compared to PLS-DA. Incorporating samples from different manufacturers may be useful for improving the broader applicability of the model.
期刊介绍:
JNIRS — Journal of Near Infrared Spectroscopy is a peer reviewed journal, publishing original research papers, short communications, review articles and letters concerned with near infrared spectroscopy and technology, its application, new instrumentation and the use of chemometric and data handling techniques within NIR.