利用直觉模糊熵法选择特征

Q1 Decision Sciences
K. Pandey, A. Mishra, Pratibha Rani, Jabir Ali, R. Chakrabortty
{"title":"利用直觉模糊熵法选择特征","authors":"K. Pandey, A. Mishra, Pratibha Rani, Jabir Ali, R. Chakrabortty","doi":"10.31181/dmame07012023p","DOIUrl":null,"url":null,"abstract":"Feature selection is the most significant pre-processing activity, which intends to reduce the data dimensionality for enhancing the machine learning process. The evaluation of feature selection must consider classification, performance, efficiency, stability, and many factors. Nowadays, uncertainty is commonly occurred in the feature selection process due to time limitations, imprecise information, and the subjectivity of human minds. Moreover, the theory of intuitionistic fuzzy set has been proven as an extremely valuable tool to tackle the uncertainty and ambiguity that arises in many practical situations. Thus, this study introduces a novel feature selection framework using intuitionistic fuzzy entropy. In this regard, new entropy for IFS is proposed first and then compared with some of the previously developed entropy measures. As entropy is a measure of uncertainty present in data (features), features with higher entropy values are filtered out, and the remaining features having lower entropy values have been used to classify the data. To verify the effectiveness of the proposed entropy-based feature selection, some experiments are done with ten standard benchmark datasets by employing a support vector machine, K-nearest neighbor, and Naïve Bias classifiers. The outcomes of the study validate that the proposed entropy-based filter feature selection is more feasible and impressive than existing filter-based feature selection methods.","PeriodicalId":32695,"journal":{"name":"Decision Making Applications in Management and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Selecting features by utilizing intuitionistic fuzzy Entropy method\",\"authors\":\"K. Pandey, A. Mishra, Pratibha Rani, Jabir Ali, R. Chakrabortty\",\"doi\":\"10.31181/dmame07012023p\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection is the most significant pre-processing activity, which intends to reduce the data dimensionality for enhancing the machine learning process. The evaluation of feature selection must consider classification, performance, efficiency, stability, and many factors. Nowadays, uncertainty is commonly occurred in the feature selection process due to time limitations, imprecise information, and the subjectivity of human minds. Moreover, the theory of intuitionistic fuzzy set has been proven as an extremely valuable tool to tackle the uncertainty and ambiguity that arises in many practical situations. Thus, this study introduces a novel feature selection framework using intuitionistic fuzzy entropy. In this regard, new entropy for IFS is proposed first and then compared with some of the previously developed entropy measures. As entropy is a measure of uncertainty present in data (features), features with higher entropy values are filtered out, and the remaining features having lower entropy values have been used to classify the data. To verify the effectiveness of the proposed entropy-based feature selection, some experiments are done with ten standard benchmark datasets by employing a support vector machine, K-nearest neighbor, and Naïve Bias classifiers. The outcomes of the study validate that the proposed entropy-based filter feature selection is more feasible and impressive than existing filter-based feature selection methods.\",\"PeriodicalId\":32695,\"journal\":{\"name\":\"Decision Making Applications in Management and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Making Applications in Management and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31181/dmame07012023p\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Making Applications in Management and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31181/dmame07012023p","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 14

摘要

特征选择是最重要的预处理活动,旨在降低数据维度,以增强机器学习过程。特征选择的评估必须考虑分类、性能、效率、稳定性和许多因素。目前,由于时间限制、信息不精确以及人类思维的主观性,特征选择过程中普遍存在不确定性。此外,直觉模糊集理论已被证明是解决许多实际情况中出现的不确定性和模糊性的一个非常有价值的工具。因此,本研究引入了一种新的基于直觉模糊熵的特征选择框架。在这方面,首先提出了IFS的新熵,然后与以前开发的一些熵度量进行了比较。由于熵是数据(特征)中存在的不确定性的度量,因此具有较高熵值的特征被过滤掉,并且具有较低熵值的剩余特征被用于对数据进行分类。为了验证所提出的基于熵的特征选择的有效性,通过使用支持向量机、K近邻和Naïve Bias分类器,在10个标准基准数据集上进行了一些实验。研究结果验证了所提出的基于熵的滤波器特征选择方法比现有的基于滤波器的特征选择方法更可行、更令人印象深刻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selecting features by utilizing intuitionistic fuzzy Entropy method
Feature selection is the most significant pre-processing activity, which intends to reduce the data dimensionality for enhancing the machine learning process. The evaluation of feature selection must consider classification, performance, efficiency, stability, and many factors. Nowadays, uncertainty is commonly occurred in the feature selection process due to time limitations, imprecise information, and the subjectivity of human minds. Moreover, the theory of intuitionistic fuzzy set has been proven as an extremely valuable tool to tackle the uncertainty and ambiguity that arises in many practical situations. Thus, this study introduces a novel feature selection framework using intuitionistic fuzzy entropy. In this regard, new entropy for IFS is proposed first and then compared with some of the previously developed entropy measures. As entropy is a measure of uncertainty present in data (features), features with higher entropy values are filtered out, and the remaining features having lower entropy values have been used to classify the data. To verify the effectiveness of the proposed entropy-based feature selection, some experiments are done with ten standard benchmark datasets by employing a support vector machine, K-nearest neighbor, and Naïve Bias classifiers. The outcomes of the study validate that the proposed entropy-based filter feature selection is more feasible and impressive than existing filter-based feature selection methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Decision Making Applications in Management and Engineering
Decision Making Applications in Management and Engineering Decision Sciences-General Decision Sciences
CiteScore
14.40
自引率
0.00%
发文量
35
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信