{"title":"风电机电故障检测的卷积神经网络框架","authors":"Emilie Stone, S. Giani, D. Zappalá, C. Crabtree","doi":"10.1002/we.2857","DOIUrl":null,"url":null,"abstract":"Effective and timely health monitoring of wind turbine gearboxes and generators is essential to reduce the costs of operations and maintenance activities, especially offshore. This paper presents a scalable and lightweight convolutional neural network (CNN) framework using high‐dimensional raw condition monitoring data for the automatic detection of multiple wind turbine electromechanical faults. The proposed approach leverages the potential of combining information from a variety of signals to learn features and to discriminate the types of fault and their severity. As a result of the CNN layers used to extract features from the signals, this architecture works in the time domain and can digest high‐resolution multi‐sensor data streams in real‐time. To overcome the inherent black‐box nature of AI models, this research proposes two interpretability techniques, multidimensional scaling and layer‐wise relevance propagation, to analyse the proposed model's inner‐working and identify the signal features relevant for fault classification. Experimental results show high performance and classification accuracies above 99.9% for all fault cases tested, demonstrating the efficacy of the proposed fault‐detection system.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Convolutional neural network framework for wind turbine electromechanical fault detection\",\"authors\":\"Emilie Stone, S. Giani, D. Zappalá, C. Crabtree\",\"doi\":\"10.1002/we.2857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective and timely health monitoring of wind turbine gearboxes and generators is essential to reduce the costs of operations and maintenance activities, especially offshore. This paper presents a scalable and lightweight convolutional neural network (CNN) framework using high‐dimensional raw condition monitoring data for the automatic detection of multiple wind turbine electromechanical faults. The proposed approach leverages the potential of combining information from a variety of signals to learn features and to discriminate the types of fault and their severity. As a result of the CNN layers used to extract features from the signals, this architecture works in the time domain and can digest high‐resolution multi‐sensor data streams in real‐time. To overcome the inherent black‐box nature of AI models, this research proposes two interpretability techniques, multidimensional scaling and layer‐wise relevance propagation, to analyse the proposed model's inner‐working and identify the signal features relevant for fault classification. Experimental results show high performance and classification accuracies above 99.9% for all fault cases tested, demonstrating the efficacy of the proposed fault‐detection system.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/we.2857\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/we.2857","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Convolutional neural network framework for wind turbine electromechanical fault detection
Effective and timely health monitoring of wind turbine gearboxes and generators is essential to reduce the costs of operations and maintenance activities, especially offshore. This paper presents a scalable and lightweight convolutional neural network (CNN) framework using high‐dimensional raw condition monitoring data for the automatic detection of multiple wind turbine electromechanical faults. The proposed approach leverages the potential of combining information from a variety of signals to learn features and to discriminate the types of fault and their severity. As a result of the CNN layers used to extract features from the signals, this architecture works in the time domain and can digest high‐resolution multi‐sensor data streams in real‐time. To overcome the inherent black‐box nature of AI models, this research proposes two interpretability techniques, multidimensional scaling and layer‐wise relevance propagation, to analyse the proposed model's inner‐working and identify the signal features relevant for fault classification. Experimental results show high performance and classification accuracies above 99.9% for all fault cases tested, demonstrating the efficacy of the proposed fault‐detection system.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.