用万能拉伸试验机直接测定花岗岩的抗拉强度

IF 2.1 3区 工程技术 Q2 ENGINEERING, CIVIL
H. Haeri, V. Sarfarazi, M. F. Marji, M. Yavari, Amin Zahedi-khameneh
{"title":"用万能拉伸试验机直接测定花岗岩的抗拉强度","authors":"H. Haeri, V. Sarfarazi, M. F. Marji, M. Yavari, Amin Zahedi-khameneh","doi":"10.12989/SSS.2021.27.4.559","DOIUrl":null,"url":null,"abstract":"The direct tensile strength of a typical hard rock like granite is measured by a novel apparatus known as compression-to-tensile load transfer (CTLT) device. The rock specimen is prepared in form of a slab containing a central hole and placed in the universal testing machine where the direct tensile stress can be applied to this specimen by implementing a special type of load transferring device which converts the applied compressive load to that of the tensile during the test. In the present work, some typical hard rock specimens of granite are specially prepared and tested in the laboratory to measure their direct tensile strengths. Then, a new load converting device implemented in the universal tensile testing machine is used to cause the rock specimen to be subjected to a direct tensile loading during the test. The compressive load was applied to the transferring device at the rate of 0.02 MPa/s. Numerical modeling of the tested specimens were accomplished using the discrete element method (DEM) and the higher order displacement discontinuity method (HODDM). The tensile failure of granite rock mainly occurs along the horizontal axis. The experimental results were in a good accordance with DEM results and HODDM outputs.","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":"27 1","pages":"559"},"PeriodicalIF":2.1000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct tensile strength measurement of granite by the universal tensile testing machine\",\"authors\":\"H. Haeri, V. Sarfarazi, M. F. Marji, M. Yavari, Amin Zahedi-khameneh\",\"doi\":\"10.12989/SSS.2021.27.4.559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The direct tensile strength of a typical hard rock like granite is measured by a novel apparatus known as compression-to-tensile load transfer (CTLT) device. The rock specimen is prepared in form of a slab containing a central hole and placed in the universal testing machine where the direct tensile stress can be applied to this specimen by implementing a special type of load transferring device which converts the applied compressive load to that of the tensile during the test. In the present work, some typical hard rock specimens of granite are specially prepared and tested in the laboratory to measure their direct tensile strengths. Then, a new load converting device implemented in the universal tensile testing machine is used to cause the rock specimen to be subjected to a direct tensile loading during the test. The compressive load was applied to the transferring device at the rate of 0.02 MPa/s. Numerical modeling of the tested specimens were accomplished using the discrete element method (DEM) and the higher order displacement discontinuity method (HODDM). The tensile failure of granite rock mainly occurs along the horizontal axis. The experimental results were in a good accordance with DEM results and HODDM outputs.\",\"PeriodicalId\":51155,\"journal\":{\"name\":\"Smart Structures and Systems\",\"volume\":\"27 1\",\"pages\":\"559\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Structures and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SSS.2021.27.4.559\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Structures and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SSS.2021.27.4.559","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

典型的硬岩石,如花岗岩的直接抗拉强度是由一种称为压缩-拉伸载荷传递(CTLT)装置的新型仪器测量的。岩石试样被制作成包含一个中心孔的板的形式,并放置在万能试验机中,通过实施一种特殊类型的负载传递装置,可以将施加的压缩载荷转换为拉伸载荷,从而将直接拉应力施加到该试样上。在本工作中,专门制备了一些典型的花岗岩硬岩试样,并在实验室进行了测试,以测量其直接抗拉强度。然后,在万能拉力试验机上安装了一种新的载荷转换装置,使岩石试样在试验过程中受到直接的拉伸载荷。施加在传递装置上的压缩载荷速率为0.02 MPa/s。采用离散元法(DEM)和高阶位移不连续法(HODDM)对试件进行了数值模拟。花岗岩的拉伸破坏主要沿水平方向发生。实验结果与DEM结果和HODDM输出结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct tensile strength measurement of granite by the universal tensile testing machine
The direct tensile strength of a typical hard rock like granite is measured by a novel apparatus known as compression-to-tensile load transfer (CTLT) device. The rock specimen is prepared in form of a slab containing a central hole and placed in the universal testing machine where the direct tensile stress can be applied to this specimen by implementing a special type of load transferring device which converts the applied compressive load to that of the tensile during the test. In the present work, some typical hard rock specimens of granite are specially prepared and tested in the laboratory to measure their direct tensile strengths. Then, a new load converting device implemented in the universal tensile testing machine is used to cause the rock specimen to be subjected to a direct tensile loading during the test. The compressive load was applied to the transferring device at the rate of 0.02 MPa/s. Numerical modeling of the tested specimens were accomplished using the discrete element method (DEM) and the higher order displacement discontinuity method (HODDM). The tensile failure of granite rock mainly occurs along the horizontal axis. The experimental results were in a good accordance with DEM results and HODDM outputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Structures and Systems
Smart Structures and Systems 工程技术-工程:机械
CiteScore
6.50
自引率
8.60%
发文量
0
审稿时长
9 months
期刊介绍: An International Journal of Mechatronics, Sensors, Monitoring, Control, Diagnosis, and Management airns at providing a major publication channel for researchers in the general area of smart structures and systems. Typical subjects considered by the journal include: Sensors/Actuators(Materials/devices/ informatics/networking) Structural Health Monitoring and Control Diagnosis/Prognosis Life Cycle Engineering(planning/design/ maintenance/renewal) and related areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信