瓦斯膨胀条件下土壤瓦斯突出的实验与数值研究

IF 0.9 4区 工程技术 Q4 ENGINEERING, CIVIL
Danning Liu, Peng Li, Xuhui Zhang, Xiaobing Lu, Jiyan Qiao, Zhenpeng Leng, Yan Zhang
{"title":"瓦斯膨胀条件下土壤瓦斯突出的实验与数值研究","authors":"Danning Liu, Peng Li, Xuhui Zhang, Xiaobing Lu, Jiyan Qiao, Zhenpeng Leng, Yan Zhang","doi":"10.17736/ijope.2022.jc862","DOIUrl":null,"url":null,"abstract":"The outburst fragmentation of soil caused by the dissociation of the gas hydrate was studied based on experiments and numerical simulation. The dense discrete particle model (DDPM) combined with the kinetic theory of granular flow (KTGF) was presented to reveal the outburst morphology of soil, considering the interphase forces and frictional effect between soil particles. The numerical simulation results in geometric features are consistent with the high-speed photography results. Moreover, the effects of initial gas pressure and thicknesses of the overlying layer on the occurrence of gas outburst were investigated in the experiments.","PeriodicalId":50302,"journal":{"name":"International Journal of Offshore and Polar Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and Numerical Study of Gas Outburst with Soil Under Gas Expansion\",\"authors\":\"Danning Liu, Peng Li, Xuhui Zhang, Xiaobing Lu, Jiyan Qiao, Zhenpeng Leng, Yan Zhang\",\"doi\":\"10.17736/ijope.2022.jc862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The outburst fragmentation of soil caused by the dissociation of the gas hydrate was studied based on experiments and numerical simulation. The dense discrete particle model (DDPM) combined with the kinetic theory of granular flow (KTGF) was presented to reveal the outburst morphology of soil, considering the interphase forces and frictional effect between soil particles. The numerical simulation results in geometric features are consistent with the high-speed photography results. Moreover, the effects of initial gas pressure and thicknesses of the overlying layer on the occurrence of gas outburst were investigated in the experiments.\",\"PeriodicalId\":50302,\"journal\":{\"name\":\"International Journal of Offshore and Polar Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Offshore and Polar Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.17736/ijope.2022.jc862\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Offshore and Polar Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17736/ijope.2022.jc862","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

通过实验和数值模拟研究了天然气水合物离解引起的土壤突出破碎。结合颗粒流动力学理论,建立了考虑相间作用力和颗粒间摩擦作用的稠密离散颗粒模型(DDPM),揭示了土体的突出形态。几何特征的数值模拟结果与高速摄影结果一致。此外,还研究了初始瓦斯压力和上覆层厚度对瓦斯突出发生的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental and Numerical Study of Gas Outburst with Soil Under Gas Expansion
The outburst fragmentation of soil caused by the dissociation of the gas hydrate was studied based on experiments and numerical simulation. The dense discrete particle model (DDPM) combined with the kinetic theory of granular flow (KTGF) was presented to reveal the outburst morphology of soil, considering the interphase forces and frictional effect between soil particles. The numerical simulation results in geometric features are consistent with the high-speed photography results. Moreover, the effects of initial gas pressure and thicknesses of the overlying layer on the occurrence of gas outburst were investigated in the experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Offshore and Polar Engineering
International Journal of Offshore and Polar Engineering ENGINEERING, CIVIL-ENGINEERING, OCEAN
CiteScore
2.00
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: The primary aim of the IJOPE is to serve engineers and researchers worldwide by disseminating technical information of permanent interest in the fields of offshore, ocean, polar energy/resources and materials engineering. The IJOPE is the principal periodical of The International Society of Offshore and Polar Engineers (ISOPE), which is very active in the dissemination of technical information and organization of symposia and conferences in these fields throughout the world. Theoretical, experimental and engineering research papers are welcome. Brief reports of research results or outstanding engineering achievements of likely interest to readers will be published in the Technical Notes format.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信