一元反微分范畴

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
G. Cruttwell, J. Gallagher, J. Lemay, D. Pronk
{"title":"一元反微分范畴","authors":"G. Cruttwell, J. Gallagher, J. Lemay, D. Pronk","doi":"10.1017/S096012952200038X","DOIUrl":null,"url":null,"abstract":"Abstract Cartesian reverse differential categories (CRDCs) are a recently defined structure which categorically model the reverse differentiation operations used in supervised learning. Here, we define a related structure called a monoidal reverse differential category, prove important results about its relationship to CRDCs, and provide examples of both structures, including examples coming from models of quantum computation.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Monoidal reverse differential categories\",\"authors\":\"G. Cruttwell, J. Gallagher, J. Lemay, D. Pronk\",\"doi\":\"10.1017/S096012952200038X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Cartesian reverse differential categories (CRDCs) are a recently defined structure which categorically model the reverse differentiation operations used in supervised learning. Here, we define a related structure called a monoidal reverse differential category, prove important results about its relationship to CRDCs, and provide examples of both structures, including examples coming from models of quantum computation.\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/S096012952200038X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S096012952200038X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

笛卡尔反微分范畴(CRDCs)是最近定义的一种结构,它对监督学习中使用的反微分操作进行了明确的建模。在这里,我们定义了一种称为单体反微分范畴的相关结构,证明了它与CRDC关系的重要结果,并提供了这两种结构的例子,包括来自量子计算模型的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monoidal reverse differential categories
Abstract Cartesian reverse differential categories (CRDCs) are a recently defined structure which categorically model the reverse differentiation operations used in supervised learning. Here, we define a related structure called a monoidal reverse differential category, prove important results about its relationship to CRDCs, and provide examples of both structures, including examples coming from models of quantum computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Structures in Computer Science
Mathematical Structures in Computer Science 工程技术-计算机:理论方法
CiteScore
1.50
自引率
0.00%
发文量
30
审稿时长
12 months
期刊介绍: Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信