用求积技术求解一维和二维Fisher方程的一种计算方法

Q3 Business, Management and Accounting
G. Arora, V. Joshi
{"title":"用求积技术求解一维和二维Fisher方程的一种计算方法","authors":"G. Arora, V. Joshi","doi":"10.1080/01966324.2021.1933660","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, a refined form of the differential quadrature method is proposed to compute the numerical solution of one and two-dimensional convection-diffusion Fisher’s equation. The cubic trigonometric B-spline basis functions are applied in the differential quadrature method in a modified form to obtain the weighting coefficients. The application of the method reduces nonlinear Fisher’s partial differential equation into a system of ordinary differential equations which can be solved by applying the Runge-Kutta method. Six numerical test problems of Fisher’s equation are analyzed numerically to establish the efficiency of the proposed method. The stability of the method is also discussed using the matrix method.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"40 1","pages":"145 - 162"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2021.1933660","citationCount":"4","resultStr":"{\"title\":\"A Computational Approach for One and Two Dimensional Fisher’s Equation Using Quadrature Technique\",\"authors\":\"G. Arora, V. Joshi\",\"doi\":\"10.1080/01966324.2021.1933660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, a refined form of the differential quadrature method is proposed to compute the numerical solution of one and two-dimensional convection-diffusion Fisher’s equation. The cubic trigonometric B-spline basis functions are applied in the differential quadrature method in a modified form to obtain the weighting coefficients. The application of the method reduces nonlinear Fisher’s partial differential equation into a system of ordinary differential equations which can be solved by applying the Runge-Kutta method. Six numerical test problems of Fisher’s equation are analyzed numerically to establish the efficiency of the proposed method. The stability of the method is also discussed using the matrix method.\",\"PeriodicalId\":35850,\"journal\":{\"name\":\"American Journal of Mathematical and Management Sciences\",\"volume\":\"40 1\",\"pages\":\"145 - 162\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01966324.2021.1933660\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematical and Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01966324.2021.1933660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2021.1933660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 4

摘要

摘要本文提出了一种精细形式的微分求积法来计算一维和二维对流扩散Fisher方程的数值解。将三次三角B样条基函数以一种改进的形式应用于微分求积法中,以获得加权系数。该方法的应用将非线性Fisher偏微分方程简化为一个常微分方程组,该方程组可用Runge-Kutta方法求解。对Fisher方程的六个数值试验问题进行了数值分析,以确定所提出方法的有效性。利用矩阵方法讨论了该方法的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Computational Approach for One and Two Dimensional Fisher’s Equation Using Quadrature Technique
Abstract In this paper, a refined form of the differential quadrature method is proposed to compute the numerical solution of one and two-dimensional convection-diffusion Fisher’s equation. The cubic trigonometric B-spline basis functions are applied in the differential quadrature method in a modified form to obtain the weighting coefficients. The application of the method reduces nonlinear Fisher’s partial differential equation into a system of ordinary differential equations which can be solved by applying the Runge-Kutta method. Six numerical test problems of Fisher’s equation are analyzed numerically to establish the efficiency of the proposed method. The stability of the method is also discussed using the matrix method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信