Pseudo-Kähler和爱因斯坦解流形上的伪sasaki结构

IF 0.6 3区 数学 Q3 MATHEMATICS
Diego Conti, Federico Alberto Rossi, Romeo Segnan Dalmasso
{"title":"Pseudo-Kähler和爱因斯坦解流形上的伪sasaki结构","authors":"Diego Conti,&nbsp;Federico Alberto Rossi,&nbsp;Romeo Segnan Dalmasso","doi":"10.1007/s10455-023-09894-0","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to construct left-invariant Einstein pseudo-Riemannian Sasaki metrics on solvable Lie groups. We consider the class of <span>\\(\\mathfrak {z}\\)</span>-standard Sasaki solvable Lie algebras of dimension <span>\\(2n+3\\)</span>, which are in one-to-one correspondence with pseudo-Kähler nilpotent Lie algebras of dimension 2<i>n</i> endowed with a compatible derivation, in a suitable sense. We characterize the pseudo-Kähler structures and derivations giving rise to Sasaki–Einstein metrics. We classify <span>\\(\\mathfrak {z}\\)</span>-standard Sasaki solvable Lie algebras of dimension <span>\\(\\le 7\\)</span> and those whose pseudo-Kähler reduction is an abelian Lie algebra. The Einstein metrics we obtain are standard, but not of pseudo-Iwasawa type.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"63 3","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09894-0.pdf","citationCount":"2","resultStr":"{\"title\":\"Pseudo-Kähler and pseudo-Sasaki structures on Einstein solvmanifolds\",\"authors\":\"Diego Conti,&nbsp;Federico Alberto Rossi,&nbsp;Romeo Segnan Dalmasso\",\"doi\":\"10.1007/s10455-023-09894-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this paper is to construct left-invariant Einstein pseudo-Riemannian Sasaki metrics on solvable Lie groups. We consider the class of <span>\\\\(\\\\mathfrak {z}\\\\)</span>-standard Sasaki solvable Lie algebras of dimension <span>\\\\(2n+3\\\\)</span>, which are in one-to-one correspondence with pseudo-Kähler nilpotent Lie algebras of dimension 2<i>n</i> endowed with a compatible derivation, in a suitable sense. We characterize the pseudo-Kähler structures and derivations giving rise to Sasaki–Einstein metrics. We classify <span>\\\\(\\\\mathfrak {z}\\\\)</span>-standard Sasaki solvable Lie algebras of dimension <span>\\\\(\\\\le 7\\\\)</span> and those whose pseudo-Kähler reduction is an abelian Lie algebra. The Einstein metrics we obtain are standard, but not of pseudo-Iwasawa type.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":\"63 3\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10455-023-09894-0.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09894-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09894-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文的目的是在可解李群上构造左不变的Einstein伪黎曼Sasaki度量。我们考虑了一类\(\mathfrak{z}\)-标准Sasaki可解维李代数\(2n+3\),它与具有相容导数的2n维伪Kähler幂零李代数在适当意义上一一对应。我们刻画了产生Sasaki–Einstein度量的伪Kähler结构和导数。我们对\(\mathfrak{z}\)-标准Sasaki可解维李代数\(\le 7\)及其伪Kähler约简为阿贝尔李代数的李代数进行了分类。我们得到的爱因斯坦度量是标准的,但不是伪岩泽类型的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pseudo-Kähler and pseudo-Sasaki structures on Einstein solvmanifolds

Pseudo-Kähler and pseudo-Sasaki structures on Einstein solvmanifolds

The aim of this paper is to construct left-invariant Einstein pseudo-Riemannian Sasaki metrics on solvable Lie groups. We consider the class of \(\mathfrak {z}\)-standard Sasaki solvable Lie algebras of dimension \(2n+3\), which are in one-to-one correspondence with pseudo-Kähler nilpotent Lie algebras of dimension 2n endowed with a compatible derivation, in a suitable sense. We characterize the pseudo-Kähler structures and derivations giving rise to Sasaki–Einstein metrics. We classify \(\mathfrak {z}\)-standard Sasaki solvable Lie algebras of dimension \(\le 7\) and those whose pseudo-Kähler reduction is an abelian Lie algebra. The Einstein metrics we obtain are standard, but not of pseudo-Iwasawa type.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信