有效变量数不确定的COX回归模型的序贯收缩估计

H. Lu, Juling Zhou, Cuiling Dong
{"title":"有效变量数不确定的COX回归模型的序贯收缩估计","authors":"H. Lu, Juling Zhou, Cuiling Dong","doi":"10.4236/mnsms.2021.113004","DOIUrl":null,"url":null,"abstract":"In the applications of COX regression models, we always encounter data \nsets that contain too many variables that \nonly a few of them contribute to the model. Therefore, it will waste \nmuch more samples to estimate the “noneffective” variables in the inference. In \nthis paper, we use a sequential procedure for constructing the \nfixed size confidence set for the “effective” parameters to the model based on \nan adaptive shrinkage estimate such that the “effective” coefficients can be \nefficiently identified with the minimum sample size. Fixed design is considered \nfor numerical simulation. The strong consistency, asymptotic distributions and \nconvergence rates of estimates under the fixed design are obtained. In addition, \nthe sequential procedure is shown to be asymptotically optimal in the sense of \nChow and Robbins (1965).","PeriodicalId":60895,"journal":{"name":"材料科学建模与数值模拟(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequential Shrinkage Estimate for COX Regression Models with Uncertain Number of Effective Variables\",\"authors\":\"H. Lu, Juling Zhou, Cuiling Dong\",\"doi\":\"10.4236/mnsms.2021.113004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the applications of COX regression models, we always encounter data \\nsets that contain too many variables that \\nonly a few of them contribute to the model. Therefore, it will waste \\nmuch more samples to estimate the “noneffective” variables in the inference. In \\nthis paper, we use a sequential procedure for constructing the \\nfixed size confidence set for the “effective” parameters to the model based on \\nan adaptive shrinkage estimate such that the “effective” coefficients can be \\nefficiently identified with the minimum sample size. Fixed design is considered \\nfor numerical simulation. The strong consistency, asymptotic distributions and \\nconvergence rates of estimates under the fixed design are obtained. In addition, \\nthe sequential procedure is shown to be asymptotically optimal in the sense of \\nChow and Robbins (1965).\",\"PeriodicalId\":60895,\"journal\":{\"name\":\"材料科学建模与数值模拟(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"材料科学建模与数值模拟(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/mnsms.2021.113004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料科学建模与数值模拟(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/mnsms.2021.113004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在COX回归模型的应用中,我们总是会遇到包含太多变量的数据集,而这些变量中只有少数对模型有贡献。因此,在推理中估计“无效”变量会浪费更多的样本。在本文中,我们使用一个序列过程来构建基于自适应收缩估计的模型“有效”参数的固定大小置信集,以便可以用最小样本量有效地识别“有效”系数。数值模拟考虑固定设计。得到了固定设计下估计的强一致性、渐近分布和收敛速度。此外,在Chow和Robbins(1965)的意义上,序列过程被证明是渐近最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequential Shrinkage Estimate for COX Regression Models with Uncertain Number of Effective Variables
In the applications of COX regression models, we always encounter data sets that contain too many variables that only a few of them contribute to the model. Therefore, it will waste much more samples to estimate the “noneffective” variables in the inference. In this paper, we use a sequential procedure for constructing the fixed size confidence set for the “effective” parameters to the model based on an adaptive shrinkage estimate such that the “effective” coefficients can be efficiently identified with the minimum sample size. Fixed design is considered for numerical simulation. The strong consistency, asymptotic distributions and convergence rates of estimates under the fixed design are obtained. In addition, the sequential procedure is shown to be asymptotically optimal in the sense of Chow and Robbins (1965).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
51
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信