中低速横框浸水对船舶阻力构件的影响

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
I. Kamal, A. Ismail, M. N. Abdullah, Yassen Adnan Ahmed
{"title":"中低速横框浸水对船舶阻力构件的影响","authors":"I. Kamal, A. Ismail, M. N. Abdullah, Yassen Adnan Ahmed","doi":"10.3329/JNAME.V17I2.48494","DOIUrl":null,"url":null,"abstract":"The transom stern offered some advantages over the traditional rounded cruiser stern reducing the resistance of a ship. This can only be achieved if the transom stern is carefully designed with suitable transom immersion ratio. In this study, the influence of different transom area immersion ratios on the resistance components was investigated for a semi-displacement hull and a full displacement hull.  The base hull was based on NPL hull form and KCS hull form for a semi-displacement and full-displacement hull respectively. The transom immersion ratios for the NPL hull were varied at a ratio of 0.5, 0.7, 0.8 and 1.0.  The resistance of each of the NPL hull form was simulated at Froude number 0.3 up to 0.6. The transom immersion ratios for the KCS hull were varied at a ratio of 0.05, 0.1, 0.15 and 0.3. The resistance of each of the KCS hull form was simulated at Froude number 0.195, 0.23, 0.26 and 0.28.  The transoms of both hulls were modified or varied systematically to study the influence of the transom shape or immersion on the total and wave resistance components. The investigation was carried out using a CFD software named SHIPFLOW 6.3 based on RANSE solver. These results on the NPL hull shows that the larger the transom immersion, the higher the resistance will be for a semi-displacement vessel. The increased resistance is contributed by additional frictional and wave resistance components. The results for the KCS hull seems to contradict with the results obtained from the NPL hull. The larger and deeper transom for the case of KCS hull form sometimes can be beneficial at higher Froude number.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Influence of the transom immersion to ship resistance components at low and medium speeds\",\"authors\":\"I. Kamal, A. Ismail, M. N. Abdullah, Yassen Adnan Ahmed\",\"doi\":\"10.3329/JNAME.V17I2.48494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transom stern offered some advantages over the traditional rounded cruiser stern reducing the resistance of a ship. This can only be achieved if the transom stern is carefully designed with suitable transom immersion ratio. In this study, the influence of different transom area immersion ratios on the resistance components was investigated for a semi-displacement hull and a full displacement hull.  The base hull was based on NPL hull form and KCS hull form for a semi-displacement and full-displacement hull respectively. The transom immersion ratios for the NPL hull were varied at a ratio of 0.5, 0.7, 0.8 and 1.0.  The resistance of each of the NPL hull form was simulated at Froude number 0.3 up to 0.6. The transom immersion ratios for the KCS hull were varied at a ratio of 0.05, 0.1, 0.15 and 0.3. The resistance of each of the KCS hull form was simulated at Froude number 0.195, 0.23, 0.26 and 0.28.  The transoms of both hulls were modified or varied systematically to study the influence of the transom shape or immersion on the total and wave resistance components. The investigation was carried out using a CFD software named SHIPFLOW 6.3 based on RANSE solver. These results on the NPL hull shows that the larger the transom immersion, the higher the resistance will be for a semi-displacement vessel. The increased resistance is contributed by additional frictional and wave resistance components. The results for the KCS hull seems to contradict with the results obtained from the NPL hull. The larger and deeper transom for the case of KCS hull form sometimes can be beneficial at higher Froude number.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/JNAME.V17I2.48494\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/JNAME.V17I2.48494","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

与传统的圆形巡洋舰船尾相比,横尾提供了一些优势,减少了船只的阻力。只有在精心设计了合适的横尾浸入比的情况下,才能实现这一点。在本研究中,研究了半排水船体和全排水船体不同横截面积浸入率对阻力部件的影响。基础船体分别基于半排水量和全排水量船体的NPL船体形状和KCS船体形状。NPL船体的横框浸入比以0.5、0.7、0.8和1.0的比例变化。在弗劳德数0.3至0.6时模拟了每种NPL船体形式的阻力。KCS船体的横框浸入比以0.05、0.1、0.15和0.3的比例变化。在弗劳德数0.195、0.23、0.26和0.28下模拟了KCS船体的阻力。对两种船体的横框进行了系统的修改或变化,以研究横框形状或浸入对总阻力和波浪阻力分量的影响。该研究是使用基于RANSE求解器的CFD软件SHIPFLOW 6.3进行的。NPL船体的这些结果表明,横框浸入越大,半排水船舶的阻力就越高。增加的阻力是由额外的摩擦阻力和波浪阻力组成的。KCS船体的结果似乎与从NPL船体获得的结果相矛盾。在KCS船体形式的情况下,较大和较深的横框有时在较高的弗劳德数下是有益的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of the transom immersion to ship resistance components at low and medium speeds
The transom stern offered some advantages over the traditional rounded cruiser stern reducing the resistance of a ship. This can only be achieved if the transom stern is carefully designed with suitable transom immersion ratio. In this study, the influence of different transom area immersion ratios on the resistance components was investigated for a semi-displacement hull and a full displacement hull.  The base hull was based on NPL hull form and KCS hull form for a semi-displacement and full-displacement hull respectively. The transom immersion ratios for the NPL hull were varied at a ratio of 0.5, 0.7, 0.8 and 1.0.  The resistance of each of the NPL hull form was simulated at Froude number 0.3 up to 0.6. The transom immersion ratios for the KCS hull were varied at a ratio of 0.05, 0.1, 0.15 and 0.3. The resistance of each of the KCS hull form was simulated at Froude number 0.195, 0.23, 0.26 and 0.28.  The transoms of both hulls were modified or varied systematically to study the influence of the transom shape or immersion on the total and wave resistance components. The investigation was carried out using a CFD software named SHIPFLOW 6.3 based on RANSE solver. These results on the NPL hull shows that the larger the transom immersion, the higher the resistance will be for a semi-displacement vessel. The increased resistance is contributed by additional frictional and wave resistance components. The results for the KCS hull seems to contradict with the results obtained from the NPL hull. The larger and deeper transom for the case of KCS hull form sometimes can be beneficial at higher Froude number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信