纳米sio2和纳米fe2o3对水泥砂浆抗压强度、抗折强度、孔隙率和电阻率的综合影响

IF 1.1 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
M. Sanjuán, C. Argiz, J. Gálvez, E. Reyes
{"title":"纳米sio2和纳米fe2o3对水泥砂浆抗压强度、抗折强度、孔隙率和电阻率的综合影响","authors":"M. Sanjuán, C. Argiz, J. Gálvez, E. Reyes","doi":"10.3989/MC.2018.10716","DOIUrl":null,"url":null,"abstract":"The compressive strength, flexural strength, porosity and electrical resistivity properties of cement mortars with nano-Fe 2 O 3 and nano-SiO 2 are studied. Amorphous silica is the main component of pozzolanic materials due to its reaction with calcium hydroxide formed from calcium silicate (C 3 S and C 2 S) hydration. The pozzolanic reaction rate is not only proportional to the amount of amorphous silica but also to the surface area available for reaction. Subsequently, fine nano-Fe 2 O 3 and nano-SiO 2 particles in mortars are expected to improve mortar performance. The experimental results showed that the compressive strength of mortars with nano-Fe 2 O 3 and nano-SiO 2 particles were lower than those obtained with the reference mortar at seven and 28 days. It was shown that the nano-particles were not able to enhance mechanical strength on every occasion. The continuous microstructural progress monitored by mercury intrusion porosimetry (MIP) measurements, pore-size distribution (PSD), total porosity and critical pore diameter also confirmed such results.","PeriodicalId":51113,"journal":{"name":"Materiales de Construccion","volume":"68 1","pages":"150"},"PeriodicalIF":1.1000,"publicationDate":"2018-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Combined effect of nano-SiO 2 and nano-Fe 2 O 3 on compressive strength, flexural strength, porosity and electrical resistivity in cement mortars\",\"authors\":\"M. Sanjuán, C. Argiz, J. Gálvez, E. Reyes\",\"doi\":\"10.3989/MC.2018.10716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The compressive strength, flexural strength, porosity and electrical resistivity properties of cement mortars with nano-Fe 2 O 3 and nano-SiO 2 are studied. Amorphous silica is the main component of pozzolanic materials due to its reaction with calcium hydroxide formed from calcium silicate (C 3 S and C 2 S) hydration. The pozzolanic reaction rate is not only proportional to the amount of amorphous silica but also to the surface area available for reaction. Subsequently, fine nano-Fe 2 O 3 and nano-SiO 2 particles in mortars are expected to improve mortar performance. The experimental results showed that the compressive strength of mortars with nano-Fe 2 O 3 and nano-SiO 2 particles were lower than those obtained with the reference mortar at seven and 28 days. It was shown that the nano-particles were not able to enhance mechanical strength on every occasion. The continuous microstructural progress monitored by mercury intrusion porosimetry (MIP) measurements, pore-size distribution (PSD), total porosity and critical pore diameter also confirmed such results.\",\"PeriodicalId\":51113,\"journal\":{\"name\":\"Materiales de Construccion\",\"volume\":\"68 1\",\"pages\":\"150\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materiales de Construccion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3989/MC.2018.10716\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiales de Construccion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3989/MC.2018.10716","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 13

摘要

研究了纳米氧化铁和纳米二氧化硅水泥砂浆的抗压强度、抗折强度、孔隙率和电阻率等性能。无定形二氧化硅与硅酸钙(c3s和c2s)水化形成的氢氧化钙反应,是火山灰材料的主要成分。火山灰的反应速率不仅与无定形二氧化硅的量成正比,而且与可用于反应的表面积成正比。随后,在砂浆中加入纳米fe2o3和纳米sio2颗粒有望改善砂浆性能。实验结果表明,在第7天和第28天,纳米氧化铁和纳米二氧化硅颗粒砂浆的抗压强度低于参考砂浆。结果表明,纳米颗粒并不能在任何情况下都能提高机械强度。通过压汞孔隙度(MIP)测量、孔隙尺寸分布(PSD)、总孔隙度和临界孔径监测的连续微观结构进展也证实了这一结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined effect of nano-SiO 2 and nano-Fe 2 O 3 on compressive strength, flexural strength, porosity and electrical resistivity in cement mortars
The compressive strength, flexural strength, porosity and electrical resistivity properties of cement mortars with nano-Fe 2 O 3 and nano-SiO 2 are studied. Amorphous silica is the main component of pozzolanic materials due to its reaction with calcium hydroxide formed from calcium silicate (C 3 S and C 2 S) hydration. The pozzolanic reaction rate is not only proportional to the amount of amorphous silica but also to the surface area available for reaction. Subsequently, fine nano-Fe 2 O 3 and nano-SiO 2 particles in mortars are expected to improve mortar performance. The experimental results showed that the compressive strength of mortars with nano-Fe 2 O 3 and nano-SiO 2 particles were lower than those obtained with the reference mortar at seven and 28 days. It was shown that the nano-particles were not able to enhance mechanical strength on every occasion. The continuous microstructural progress monitored by mercury intrusion porosimetry (MIP) measurements, pore-size distribution (PSD), total porosity and critical pore diameter also confirmed such results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materiales de Construccion
Materiales de Construccion 工程技术-材料科学:综合
CiteScore
3.20
自引率
9.50%
发文量
38
审稿时长
>12 weeks
期刊介绍: Materiales de Construcción is a quarterly, scientific Journal published in English, intended for researchers, plant technicians and other professionals engaged in the area of Construction, Materials Science and Technology. Scientific articles focus mainly on: - Physics and chemistry of the formation of cement and other binders. - Cement and concrete. Components (aggregate, admixtures, additions and similar). Behaviour and properties. - Durability and corrosion of other construction materials. - Restoration and conservation of the materials in heritage monuments. - Weathering and the deterioration of construction materials. - Use of industrial waste and by-products in construction. - Manufacture and properties of other construction materials, such as: gypsum/plaster, lime%2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信