{"title":"Fibonacci型概率分布中成功概率的矩估计和最大似然估计方法的比较","authors":"Yeil Kwon","doi":"10.2478/stattrans-2022-0028","DOIUrl":null,"url":null,"abstract":"Abstract A Fibonacci-type probability distribution provides the probabilistic models for establishing stopping rules associated with the number of consecutive successes. It can be interpreted as a generalized version of a geometric distribution. In this article, after revisiting the Fibonacci-type probability distribution to explore its definition, moments and properties, we proposed numerical methods to obtain two estimators of the success probability: the method of moments estimator (MME) and maximum likelihood estimator (MLE). The ways both of them performed were compared in terms of the mean squared error. A numerical study demon-srated that the MLE tends to outperform the MME for most of the parameter space with various sample sizes.","PeriodicalId":37985,"journal":{"name":"Statistics in Transition","volume":"23 1","pages":"27 - 47"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A comparison of the method of moments estimator and maximum likelihood estimator for the success probability in the Fibonacci-type probability distribution\",\"authors\":\"Yeil Kwon\",\"doi\":\"10.2478/stattrans-2022-0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A Fibonacci-type probability distribution provides the probabilistic models for establishing stopping rules associated with the number of consecutive successes. It can be interpreted as a generalized version of a geometric distribution. In this article, after revisiting the Fibonacci-type probability distribution to explore its definition, moments and properties, we proposed numerical methods to obtain two estimators of the success probability: the method of moments estimator (MME) and maximum likelihood estimator (MLE). The ways both of them performed were compared in terms of the mean squared error. A numerical study demon-srated that the MLE tends to outperform the MME for most of the parameter space with various sample sizes.\",\"PeriodicalId\":37985,\"journal\":{\"name\":\"Statistics in Transition\",\"volume\":\"23 1\",\"pages\":\"27 - 47\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Transition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/stattrans-2022-0028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Transition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/stattrans-2022-0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
A comparison of the method of moments estimator and maximum likelihood estimator for the success probability in the Fibonacci-type probability distribution
Abstract A Fibonacci-type probability distribution provides the probabilistic models for establishing stopping rules associated with the number of consecutive successes. It can be interpreted as a generalized version of a geometric distribution. In this article, after revisiting the Fibonacci-type probability distribution to explore its definition, moments and properties, we proposed numerical methods to obtain two estimators of the success probability: the method of moments estimator (MME) and maximum likelihood estimator (MLE). The ways both of them performed were compared in terms of the mean squared error. A numerical study demon-srated that the MLE tends to outperform the MME for most of the parameter space with various sample sizes.
期刊介绍:
Statistics in Transition (SiT) is an international journal published jointly by the Polish Statistical Association (PTS) and the Central Statistical Office of Poland (CSO/GUS), which sponsors this publication. Launched in 1993, it was issued twice a year until 2006; since then it appears - under a slightly changed title, Statistics in Transition new series - three times a year; and after 2013 as a regular quarterly journal." The journal provides a forum for exchange of ideas and experience amongst members of international community of statisticians, data producers and users, including researchers, teachers, policy makers and the general public. Its initially dominating focus on statistical issues pertinent to transition from centrally planned to a market-oriented economy has gradually been extended to embracing statistical problems related to development and modernization of the system of public (official) statistics, in general.