从微分的角度研究拓扑结构群的高不变量的可加性

IF 0.7 2区 数学 Q2 MATHEMATICS
Baojie Jiang, Hongzhi Liu
{"title":"从微分的角度研究拓扑结构群的高不变量的可加性","authors":"Baojie Jiang, Hongzhi Liu","doi":"10.4171/jncg/369","DOIUrl":null,"url":null,"abstract":"In [14], Weinberger, Xie and Yu proved that higher rho invariant associated to homotopy equivalence defines a group homomorphism from the topological structure group to analytic structure group, K-theory of certain geometric C∗-algebras, by piecewise-linear approach. In this paper, we adapt part of Weinberger, Xie and Yu’s work, to give a differential geometry theoretic proof of the additivity of the map induced by higher rho invariant associated to homotopy equivalence on topological structure group. Mathematics Subject Classification (2010). 58J22.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":"14 1","pages":"441-486"},"PeriodicalIF":0.7000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Additivity of higher rho invariant for the topological structure group from a differential point of view\",\"authors\":\"Baojie Jiang, Hongzhi Liu\",\"doi\":\"10.4171/jncg/369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In [14], Weinberger, Xie and Yu proved that higher rho invariant associated to homotopy equivalence defines a group homomorphism from the topological structure group to analytic structure group, K-theory of certain geometric C∗-algebras, by piecewise-linear approach. In this paper, we adapt part of Weinberger, Xie and Yu’s work, to give a differential geometry theoretic proof of the additivity of the map induced by higher rho invariant associated to homotopy equivalence on topological structure group. Mathematics Subject Classification (2010). 58J22.\",\"PeriodicalId\":54780,\"journal\":{\"name\":\"Journal of Noncommutative Geometry\",\"volume\":\"14 1\",\"pages\":\"441-486\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Noncommutative Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jncg/369\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jncg/369","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在[14]中,Weinberger, Xie和Yu用分段线性方法证明了与同伦等价相关的高不变量定义了从拓扑结构群到解析结构群的群同态,即若干几何C * -代数的k理论。本文利用Weinberger、Xie和Yu的部分成果,从微分几何的角度证明了拓扑结构群上与同伦等价相关的高不变量映射的可加性。数学学科分类(2010)。58 j22。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Additivity of higher rho invariant for the topological structure group from a differential point of view
In [14], Weinberger, Xie and Yu proved that higher rho invariant associated to homotopy equivalence defines a group homomorphism from the topological structure group to analytic structure group, K-theory of certain geometric C∗-algebras, by piecewise-linear approach. In this paper, we adapt part of Weinberger, Xie and Yu’s work, to give a differential geometry theoretic proof of the additivity of the map induced by higher rho invariant associated to homotopy equivalence on topological structure group. Mathematics Subject Classification (2010). 58J22.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信