W2V2 Light:用于自动语音识别的Wav2vec 2.0的轻量级版本

Dong-Hyun Kim, Jaehwan Lee, J. Mo, Joon‐Hyuk Chang
{"title":"W2V2 Light:用于自动语音识别的Wav2vec 2.0的轻量级版本","authors":"Dong-Hyun Kim, Jaehwan Lee, J. Mo, Joon‐Hyuk Chang","doi":"10.21437/interspeech.2022-10339","DOIUrl":null,"url":null,"abstract":"Wav2vec 2.0 (W2V2) has shown remarkable speech recognition performance by pre-training only with unlabeled data and fine-tuning with a small amount of labeled data. However, the practical application of W2V2 is hindered by hardware memory limitations, as it contains 317 million parameters. To ad-dress this issue, we propose W2V2-Light, a lightweight version of W2V2. We introduce two simple sharing methods to reduce the memory consumption as well as the computational costs of W2V2. Compared to W2V2, our model has 91% lesser parameters and a speedup of 1.31 times with minor degradation in downstream task performance. Moreover, by quantifying the stability of representations, we provide an empirical insight into why our model is capable of maintaining competitive performance despite the significant reduction in memory","PeriodicalId":73500,"journal":{"name":"Interspeech","volume":"1 1","pages":"3038-3042"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"W2V2-Light: A Lightweight Version of Wav2vec 2.0 for Automatic Speech Recognition\",\"authors\":\"Dong-Hyun Kim, Jaehwan Lee, J. Mo, Joon‐Hyuk Chang\",\"doi\":\"10.21437/interspeech.2022-10339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wav2vec 2.0 (W2V2) has shown remarkable speech recognition performance by pre-training only with unlabeled data and fine-tuning with a small amount of labeled data. However, the practical application of W2V2 is hindered by hardware memory limitations, as it contains 317 million parameters. To ad-dress this issue, we propose W2V2-Light, a lightweight version of W2V2. We introduce two simple sharing methods to reduce the memory consumption as well as the computational costs of W2V2. Compared to W2V2, our model has 91% lesser parameters and a speedup of 1.31 times with minor degradation in downstream task performance. Moreover, by quantifying the stability of representations, we provide an empirical insight into why our model is capable of maintaining competitive performance despite the significant reduction in memory\",\"PeriodicalId\":73500,\"journal\":{\"name\":\"Interspeech\",\"volume\":\"1 1\",\"pages\":\"3038-3042\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interspeech\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/interspeech.2022-10339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interspeech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2022-10339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

Wav2vec 2.0(W2V2)通过仅使用未标记数据进行预训练和使用少量标记数据进行微调,显示出显著的语音识别性能。然而,W2V2的实际应用受到硬件内存限制的阻碍,因为它包含3.17亿个参数。为了宣传这个问题,我们提出了W2V2 Light,W2V2的轻量级版本。我们介绍了两种简单的共享方法来减少W2V2的内存消耗和计算成本。与W2V2相比,我们的模型的参数减少了91%,速度提高了1.31倍,下游任务性能略有下降。此外,通过量化表征的稳定性,我们提供了一个经验见解,说明为什么我们的模型能够在记忆显著减少的情况下保持竞争性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
W2V2-Light: A Lightweight Version of Wav2vec 2.0 for Automatic Speech Recognition
Wav2vec 2.0 (W2V2) has shown remarkable speech recognition performance by pre-training only with unlabeled data and fine-tuning with a small amount of labeled data. However, the practical application of W2V2 is hindered by hardware memory limitations, as it contains 317 million parameters. To ad-dress this issue, we propose W2V2-Light, a lightweight version of W2V2. We introduce two simple sharing methods to reduce the memory consumption as well as the computational costs of W2V2. Compared to W2V2, our model has 91% lesser parameters and a speedup of 1.31 times with minor degradation in downstream task performance. Moreover, by quantifying the stability of representations, we provide an empirical insight into why our model is capable of maintaining competitive performance despite the significant reduction in memory
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信