用新的六阶收敛法求非线性方程的近似根

Rzgar F. Mahmood, M. Mrakhan, O. Ahmed
{"title":"用新的六阶收敛法求非线性方程的近似根","authors":"Rzgar F. Mahmood, M. Mrakhan, O. Ahmed","doi":"10.24271/psr.2022.161694","DOIUrl":null,"url":null,"abstract":"In this study, we introduced new iterative techniques, for the purpose solving nonlinear equations. The new approaches are based on the auxiliary equation and Newton's method, respectively. Our method's a convergence analysis is explained. The novel approach is found to have convergence order of six. Numerical experiments show that the new method work better than well-known iterative methods and is similar to them.","PeriodicalId":33835,"journal":{"name":"Passer Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding Approximate Roots of Nonlinear Equations by Using New Sixth-Order Convergence\",\"authors\":\"Rzgar F. Mahmood, M. Mrakhan, O. Ahmed\",\"doi\":\"10.24271/psr.2022.161694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we introduced new iterative techniques, for the purpose solving nonlinear equations. The new approaches are based on the auxiliary equation and Newton's method, respectively. Our method's a convergence analysis is explained. The novel approach is found to have convergence order of six. Numerical experiments show that the new method work better than well-known iterative methods and is similar to them.\",\"PeriodicalId\":33835,\"journal\":{\"name\":\"Passer Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Passer Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24271/psr.2022.161694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Passer Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24271/psr.2022.161694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们引入了新的迭代技术,用于求解非线性方程。新方法分别基于辅助方程和牛顿法。说明了该方法的收敛性分析。该方法的收敛阶为6。数值实验结果表明,该方法与传统的迭代法比较,效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding Approximate Roots of Nonlinear Equations by Using New Sixth-Order Convergence
In this study, we introduced new iterative techniques, for the purpose solving nonlinear equations. The new approaches are based on the auxiliary equation and Newton's method, respectively. Our method's a convergence analysis is explained. The novel approach is found to have convergence order of six. Numerical experiments show that the new method work better than well-known iterative methods and is similar to them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
23
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信