在莫比乌斯可变形超曲面上

IF 1.3 2区 数学 Q1 MATHEMATICS
M. I. Jimenez, R. Tojeiro
{"title":"在莫比乌斯可变形超曲面上","authors":"M. I. Jimenez, R. Tojeiro","doi":"10.4171/rmi/1437","DOIUrl":null,"url":null,"abstract":"In the article [\\emph{Deformations of hypersurfaces preserving the M\\\"obius metric and a reduction theorem}, Adv. Math. 256 (2014), 156--205], Li, Ma and Wang investigated the interesting class of Moebius deformable hypersurfaces, that is, the umbilic-free Euclidean hypersurfaces $f\\colon M^n\\to \\mathbb{R}^{n+1}$ that admit non-trivial deformations preserving the Moebius metric. The classification of Moebius deformable hypersurfaces of dimension $n\\geq 4$ stated in the aforementioned article, however, misses a large class of examples. In this article we complete that classification for $n\\geq 5$.","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Moebius deformable hypersurfaces\",\"authors\":\"M. I. Jimenez, R. Tojeiro\",\"doi\":\"10.4171/rmi/1437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the article [\\\\emph{Deformations of hypersurfaces preserving the M\\\\\\\"obius metric and a reduction theorem}, Adv. Math. 256 (2014), 156--205], Li, Ma and Wang investigated the interesting class of Moebius deformable hypersurfaces, that is, the umbilic-free Euclidean hypersurfaces $f\\\\colon M^n\\\\to \\\\mathbb{R}^{n+1}$ that admit non-trivial deformations preserving the Moebius metric. The classification of Moebius deformable hypersurfaces of dimension $n\\\\geq 4$ stated in the aforementioned article, however, misses a large class of examples. In this article we complete that classification for $n\\\\geq 5$.\",\"PeriodicalId\":49604,\"journal\":{\"name\":\"Revista Matematica Iberoamericana\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matematica Iberoamericana\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rmi/1437\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1437","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在文章[\emph{保持Möbius度规的超曲面变形和约简定理},数学杂志,256(2014),156—205]中,Li, Ma和Wang研究了一类有趣的Moebius可变形超曲面,即允许非平凡变形保持Moebius度规的无带欧几里得超曲面$f\colon M^n\to \mathbb{R}^{n+1}$。然而,上述文章中所述的尺寸为$n\geq 4$的莫比乌斯可变形超曲面的分类遗漏了一大类例子。在本文中,我们完成了$n\geq 5$的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Moebius deformable hypersurfaces
In the article [\emph{Deformations of hypersurfaces preserving the M\"obius metric and a reduction theorem}, Adv. Math. 256 (2014), 156--205], Li, Ma and Wang investigated the interesting class of Moebius deformable hypersurfaces, that is, the umbilic-free Euclidean hypersurfaces $f\colon M^n\to \mathbb{R}^{n+1}$ that admit non-trivial deformations preserving the Moebius metric. The classification of Moebius deformable hypersurfaces of dimension $n\geq 4$ stated in the aforementioned article, however, misses a large class of examples. In this article we complete that classification for $n\geq 5$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
61
审稿时长
>12 weeks
期刊介绍: Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信