利用天然沸石和灰泥基吸附剂从盐水中提取钠离子和钾离子的初步研究

IF 0.3 Q4 CHEMISTRY, MULTIDISCIPLINARY
G. Seilkhanova, A. Rakhym, Anastasiya Kan, A. Kenessova, Y. Mastai
{"title":"利用天然沸石和灰泥基吸附剂从盐水中提取钠离子和钾离子的初步研究","authors":"G. Seilkhanova, A. Rakhym, Anastasiya Kan, A. Kenessova, Y. Mastai","doi":"10.15328/cb1276","DOIUrl":null,"url":null,"abstract":"In this work, sorbents based on natural zeolite (Z) and chamotte clay (ChC) treated with NaCl and HNO3 solutions were obtained to extract Na+ and K+ ions from saline water. The physicochemical characteristics of the obtained sorbents were studied by SEM, EDAX, and BET methods. It was found that successive treatment with NaCl and HNO3 solutions has a positive effect on the sorption properties of the studied materials. The maximum increase in the specific surface area from 4.5 m2/g to 39.3 m2/g is observed for acid-treated Z, and the specific surface area of ChC also increases almost 2-fold from 8.4 m2/g to 15.3 m2/g. Na+ and K+ ions are extracted from water due to ion exchange with Z and ChC cations. As a result of determining the cation exchange capacity (CEC) of the studied sorbents, it was found that treatment with a NaCl solution improves the ion exchange properties of the sorbent and leads to the formation of a “homoionic” form of aluminosilicates. Due to that the sorbents more easily enter ion exchange reactions. The authors established the sorption activity of the obtained materials based on natural Z and ChC with respect to Na+ and K+ cations. The maximum recovery rate is 28.45% for Na+ ions with the ChC-Na-H sorbent and 76.28% for K+ ions with the ChC-Na sorbent. Among Z-based sorbents, the most effective forms are Z-Na-H (15.44% Na+ recovery) and Z-Na (60.47% K+ recovery).","PeriodicalId":9860,"journal":{"name":"Chemical Bulletin of Kazakh National University","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The use of natural zeolite and chamotte clay-based sorbents for the extraction of sodium and potassium ions from saline water: \\na preliminary study\",\"authors\":\"G. Seilkhanova, A. Rakhym, Anastasiya Kan, A. Kenessova, Y. Mastai\",\"doi\":\"10.15328/cb1276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, sorbents based on natural zeolite (Z) and chamotte clay (ChC) treated with NaCl and HNO3 solutions were obtained to extract Na+ and K+ ions from saline water. The physicochemical characteristics of the obtained sorbents were studied by SEM, EDAX, and BET methods. It was found that successive treatment with NaCl and HNO3 solutions has a positive effect on the sorption properties of the studied materials. The maximum increase in the specific surface area from 4.5 m2/g to 39.3 m2/g is observed for acid-treated Z, and the specific surface area of ChC also increases almost 2-fold from 8.4 m2/g to 15.3 m2/g. Na+ and K+ ions are extracted from water due to ion exchange with Z and ChC cations. As a result of determining the cation exchange capacity (CEC) of the studied sorbents, it was found that treatment with a NaCl solution improves the ion exchange properties of the sorbent and leads to the formation of a “homoionic” form of aluminosilicates. Due to that the sorbents more easily enter ion exchange reactions. The authors established the sorption activity of the obtained materials based on natural Z and ChC with respect to Na+ and K+ cations. The maximum recovery rate is 28.45% for Na+ ions with the ChC-Na-H sorbent and 76.28% for K+ ions with the ChC-Na sorbent. Among Z-based sorbents, the most effective forms are Z-Na-H (15.44% Na+ recovery) and Z-Na (60.47% K+ recovery).\",\"PeriodicalId\":9860,\"journal\":{\"name\":\"Chemical Bulletin of Kazakh National University\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Bulletin of Kazakh National University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15328/cb1276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Bulletin of Kazakh National University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15328/cb1276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究以天然沸石(Z)和色粘土(ChC)为吸附剂,分别经NaCl和HNO3溶液处理,获得了从盐水中提取Na+和K+离子的吸附剂。采用扫描电镜(SEM)、电子能谱(EDAX)和BET等方法对所得吸附剂的物理化学特性进行了研究。结果表明,NaCl和HNO3溶液连续处理对材料的吸附性能有积极的影响。经酸处理的Z的比表面积从4.5 m2/g增加到39.3 m2/g, ChC的比表面积也从8.4 m2/g增加到15.3 m2/g,几乎增加了2倍。由于离子与Z和ChC阳离子交换,Na+和K+离子从水中被提取出来。通过测定所研究的吸附剂的阳离子交换容量(CEC),发现NaCl溶液处理提高了吸附剂的离子交换性能,并导致“同离子”形式的铝硅酸盐的形成。因此吸附剂更容易进入离子交换反应。作者建立了基于天然Z和ChC的材料对Na+和K+阳离子的吸附活性。ChC-Na- h吸附剂对Na+离子的最大回收率为28.45%,对K+离子的最大回收率为76.28%。在z基吸附剂中,Z-Na- h (Na+回收率15.44%)和Z-Na (K+回收率60.47%)是最有效的形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The use of natural zeolite and chamotte clay-based sorbents for the extraction of sodium and potassium ions from saline water: a preliminary study
In this work, sorbents based on natural zeolite (Z) and chamotte clay (ChC) treated with NaCl and HNO3 solutions were obtained to extract Na+ and K+ ions from saline water. The physicochemical characteristics of the obtained sorbents were studied by SEM, EDAX, and BET methods. It was found that successive treatment with NaCl and HNO3 solutions has a positive effect on the sorption properties of the studied materials. The maximum increase in the specific surface area from 4.5 m2/g to 39.3 m2/g is observed for acid-treated Z, and the specific surface area of ChC also increases almost 2-fold from 8.4 m2/g to 15.3 m2/g. Na+ and K+ ions are extracted from water due to ion exchange with Z and ChC cations. As a result of determining the cation exchange capacity (CEC) of the studied sorbents, it was found that treatment with a NaCl solution improves the ion exchange properties of the sorbent and leads to the formation of a “homoionic” form of aluminosilicates. Due to that the sorbents more easily enter ion exchange reactions. The authors established the sorption activity of the obtained materials based on natural Z and ChC with respect to Na+ and K+ cations. The maximum recovery rate is 28.45% for Na+ ions with the ChC-Na-H sorbent and 76.28% for K+ ions with the ChC-Na sorbent. Among Z-based sorbents, the most effective forms are Z-Na-H (15.44% Na+ recovery) and Z-Na (60.47% K+ recovery).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
17
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信