Ståle Toften, Jonas T Kjellstadli, Ole Kristian Forstrønen Thu, Ole-Johan Ellingsen
{"title":"使用基于雷达的睡眠监测仪(Somnofy)测量健康成年人的非接触性纵向呼吸频率:验证研究","authors":"Ståle Toften, Jonas T Kjellstadli, Ole Kristian Forstrønen Thu, Ole-Johan Ellingsen","doi":"10.2196/36618","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Respiratory rate (RR) is arguably the most important vital sign to detect clinical deterioration. Change in RR can also, for example, be associated with the onset of different diseases, opioid overdoses, intense workouts, or mood. However, unlike for most other vital parameters, an easy and accurate measuring method is lacking.</p><p><strong>Objective: </strong>This study aims to validate the radar-based sleep monitor, Somnofy, for measuring RRs and investigate whether events affecting RR can be detected from personalized baselines calculated from nightly averages.</p><p><strong>Methods: </strong>First, RRs from Somnofy for 37 healthy adults during full nights of sleep were extensively validated against respiratory inductance plethysmography. Then, the night-to-night consistency of a proposed filtered average RR was analyzed for 6 healthy participants in a pilot study in which they used Somnofy at home for 3 months.</p><p><strong>Results: </strong>Somnofy measured RR 84% of the time, with mean absolute error of 0.18 (SD 0.05) respirations per minute, and Bland-Altman 95% limits of agreement adjusted for repeated measurements ranged from -0.99 to 0.85. The accuracy and coverage were substantially higher in deep and light sleep than in rapid eye movement sleep and wake. The results were independent of age, sex, and BMI, but dependent on supine sleeping position for some radar orientations. For nightly filtered averages, the 95% limits of agreement ranged from -0.07 to -0.04 respirations per minute. In the longitudinal part of the study, the nightly average was consistent from night to night, and all substantial deviations coincided with self-reported illnesses.</p><p><strong>Conclusions: </strong>RRs from Somnofy were more accurate than those from any other alternative method suitable for longitudinal measurements. Moreover, the nightly averages were consistent from night to night. Thus, several factors affecting RR should be detectable as anomalies from personalized baselines, enabling a range of applications. More studies are necessary to investigate its potential in children and older adults or in a clinical setting.</p>","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":" ","pages":"e36618"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041471/pdf/","citationCount":"0","resultStr":"{\"title\":\"Noncontact Longitudinal Respiratory Rate Measurements in Healthy Adults Using Radar-Based Sleep Monitor (Somnofy): Validation Study.\",\"authors\":\"Ståle Toften, Jonas T Kjellstadli, Ole Kristian Forstrønen Thu, Ole-Johan Ellingsen\",\"doi\":\"10.2196/36618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Respiratory rate (RR) is arguably the most important vital sign to detect clinical deterioration. Change in RR can also, for example, be associated with the onset of different diseases, opioid overdoses, intense workouts, or mood. However, unlike for most other vital parameters, an easy and accurate measuring method is lacking.</p><p><strong>Objective: </strong>This study aims to validate the radar-based sleep monitor, Somnofy, for measuring RRs and investigate whether events affecting RR can be detected from personalized baselines calculated from nightly averages.</p><p><strong>Methods: </strong>First, RRs from Somnofy for 37 healthy adults during full nights of sleep were extensively validated against respiratory inductance plethysmography. Then, the night-to-night consistency of a proposed filtered average RR was analyzed for 6 healthy participants in a pilot study in which they used Somnofy at home for 3 months.</p><p><strong>Results: </strong>Somnofy measured RR 84% of the time, with mean absolute error of 0.18 (SD 0.05) respirations per minute, and Bland-Altman 95% limits of agreement adjusted for repeated measurements ranged from -0.99 to 0.85. The accuracy and coverage were substantially higher in deep and light sleep than in rapid eye movement sleep and wake. The results were independent of age, sex, and BMI, but dependent on supine sleeping position for some radar orientations. For nightly filtered averages, the 95% limits of agreement ranged from -0.07 to -0.04 respirations per minute. In the longitudinal part of the study, the nightly average was consistent from night to night, and all substantial deviations coincided with self-reported illnesses.</p><p><strong>Conclusions: </strong>RRs from Somnofy were more accurate than those from any other alternative method suitable for longitudinal measurements. Moreover, the nightly averages were consistent from night to night. Thus, several factors affecting RR should be detectable as anomalies from personalized baselines, enabling a range of applications. More studies are necessary to investigate its potential in children and older adults or in a clinical setting.</p>\",\"PeriodicalId\":87288,\"journal\":{\"name\":\"JMIR biomedical engineering\",\"volume\":\" \",\"pages\":\"e36618\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041471/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR biomedical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/36618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/36618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Noncontact Longitudinal Respiratory Rate Measurements in Healthy Adults Using Radar-Based Sleep Monitor (Somnofy): Validation Study.
Background: Respiratory rate (RR) is arguably the most important vital sign to detect clinical deterioration. Change in RR can also, for example, be associated with the onset of different diseases, opioid overdoses, intense workouts, or mood. However, unlike for most other vital parameters, an easy and accurate measuring method is lacking.
Objective: This study aims to validate the radar-based sleep monitor, Somnofy, for measuring RRs and investigate whether events affecting RR can be detected from personalized baselines calculated from nightly averages.
Methods: First, RRs from Somnofy for 37 healthy adults during full nights of sleep were extensively validated against respiratory inductance plethysmography. Then, the night-to-night consistency of a proposed filtered average RR was analyzed for 6 healthy participants in a pilot study in which they used Somnofy at home for 3 months.
Results: Somnofy measured RR 84% of the time, with mean absolute error of 0.18 (SD 0.05) respirations per minute, and Bland-Altman 95% limits of agreement adjusted for repeated measurements ranged from -0.99 to 0.85. The accuracy and coverage were substantially higher in deep and light sleep than in rapid eye movement sleep and wake. The results were independent of age, sex, and BMI, but dependent on supine sleeping position for some radar orientations. For nightly filtered averages, the 95% limits of agreement ranged from -0.07 to -0.04 respirations per minute. In the longitudinal part of the study, the nightly average was consistent from night to night, and all substantial deviations coincided with self-reported illnesses.
Conclusions: RRs from Somnofy were more accurate than those from any other alternative method suitable for longitudinal measurements. Moreover, the nightly averages were consistent from night to night. Thus, several factors affecting RR should be detectable as anomalies from personalized baselines, enabling a range of applications. More studies are necessary to investigate its potential in children and older adults or in a clinical setting.