多元线性回归的高维方差分析

IF 2.4 2区 数学 Q2 BIOLOGY
Biometrika Pub Date : 2023-01-10 DOI:10.1093/biomet/asad001
Zhipeng Lou, Xianyang Zhang, Weichi Wu
{"title":"多元线性回归的高维方差分析","authors":"Zhipeng Lou, Xianyang Zhang, Weichi Wu","doi":"10.1093/biomet/asad001","DOIUrl":null,"url":null,"abstract":"\n In this paper, we develop a systematic theory for high dimensional analysis of variance in multivariate linear regression, where the dimension and the number of coefficients can both grow with the sample size. We propose a new U type test statistic to test linear hypotheses and establish a high dimensional Gaussian approximation result under fairly mild moment assumptions. Our general framework and theory can be applied to deal with the classical one-way multivariate analysis of variance and the nonparametric one-way multivariate analysis of variance in high dimensions. To implement the test procedure, we introduce a sample-splitting based estimator of the second moment of the error covariance and discuss its properties. A simulation study shows that our proposed test outperforms some existing tests in various settings.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High Dimensional Analysis of Variance in Multivariate Linear Regression\",\"authors\":\"Zhipeng Lou, Xianyang Zhang, Weichi Wu\",\"doi\":\"10.1093/biomet/asad001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we develop a systematic theory for high dimensional analysis of variance in multivariate linear regression, where the dimension and the number of coefficients can both grow with the sample size. We propose a new U type test statistic to test linear hypotheses and establish a high dimensional Gaussian approximation result under fairly mild moment assumptions. Our general framework and theory can be applied to deal with the classical one-way multivariate analysis of variance and the nonparametric one-way multivariate analysis of variance in high dimensions. To implement the test procedure, we introduce a sample-splitting based estimator of the second moment of the error covariance and discuss its properties. A simulation study shows that our proposed test outperforms some existing tests in various settings.\",\"PeriodicalId\":9001,\"journal\":{\"name\":\"Biometrika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asad001\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asad001","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们发展了多元线性回归中高维方差分析的系统理论,其中系数的维数和数量都可以随着样本量的增加而增加。我们提出了一个新的U型检验统计量来检验线性假设,并在相当温和的矩假设下建立了高维高斯近似结果。我们的一般框架和理论可以应用于处理经典的单向多元方差分析和高维的非参数单向多元方差分析。为了实现测试程序,我们引入了一个基于样本分裂的误差协方差第二矩估计器,并讨论了它的性质。仿真研究表明,我们提出的测试在各种设置下都优于现有的一些测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Dimensional Analysis of Variance in Multivariate Linear Regression
In this paper, we develop a systematic theory for high dimensional analysis of variance in multivariate linear regression, where the dimension and the number of coefficients can both grow with the sample size. We propose a new U type test statistic to test linear hypotheses and establish a high dimensional Gaussian approximation result under fairly mild moment assumptions. Our general framework and theory can be applied to deal with the classical one-way multivariate analysis of variance and the nonparametric one-way multivariate analysis of variance in high dimensions. To implement the test procedure, we introduce a sample-splitting based estimator of the second moment of the error covariance and discuss its properties. A simulation study shows that our proposed test outperforms some existing tests in various settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信