一类具有广义变号势的Kirchhoff-Choquard方程的存在性和多重性

IF 0.6 4区 数学 Q3 MATHEMATICS
E. D. S. Boer, O. Miyagaki, P. Pucci
{"title":"一类具有广义变号势的Kirchhoff-Choquard方程的存在性和多重性","authors":"E. D. S. Boer, O. Miyagaki, P. Pucci","doi":"10.4171/RLM/984","DOIUrl":null,"url":null,"abstract":"In the present work we are concerned with the following Kirchhoff-Choquard-type equation $$-M(||\\nabla u||_{2}^{2})\\Delta u +Q(x)u + \\mu(V(|\\cdot|)\\ast u^2)u = f(u) \\mbox{ in } \\mathbb{R}^2 , $$ for $M: \\mathbb{R} \\rightarrow \\mathbb{R}$ given by $M(t)=a+bt$, $ \\mu>0 $, $ V $ a sign-changing and possible unbounded potential, $ Q $ a continuous external potential and a nonlinearity $f$ with exponential critical growth. We prove existence and multiplicity of solutions in the nondegenerate case and guarantee the existence of solutions in the degenerate case.","PeriodicalId":54497,"journal":{"name":"Rendiconti Lincei-Matematica e Applicazioni","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Existence and multiplicity results for a class of Kirchhoff–Choquard equations with a generalized sign-changing potential\",\"authors\":\"E. D. S. Boer, O. Miyagaki, P. Pucci\",\"doi\":\"10.4171/RLM/984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work we are concerned with the following Kirchhoff-Choquard-type equation $$-M(||\\\\nabla u||_{2}^{2})\\\\Delta u +Q(x)u + \\\\mu(V(|\\\\cdot|)\\\\ast u^2)u = f(u) \\\\mbox{ in } \\\\mathbb{R}^2 , $$ for $M: \\\\mathbb{R} \\\\rightarrow \\\\mathbb{R}$ given by $M(t)=a+bt$, $ \\\\mu>0 $, $ V $ a sign-changing and possible unbounded potential, $ Q $ a continuous external potential and a nonlinearity $f$ with exponential critical growth. We prove existence and multiplicity of solutions in the nondegenerate case and guarantee the existence of solutions in the degenerate case.\",\"PeriodicalId\":54497,\"journal\":{\"name\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/RLM/984\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti Lincei-Matematica e Applicazioni","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/RLM/984","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

在本工作中,我们关注以下Kirchhoff-Choquard型方程$$-M(|\nabla u||_{2}^{2})\Delta u+Q(x)u+\mu(V(|\cdot|)\ast u^2)u=f(u)\mbox{In}\mathbb{R}^2,$$for$M:\mathbb{R}\rightarrow\mathbb \R}$由$M(t)=a+bt$给出,$\mu>0$,$V$符号变化和可能的无界势,连续外部势$Q$和指数临界增长的非线性$f$。我们证明了非退化情形下解的存在性和多重性,并保证了退化情形中解的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and multiplicity results for a class of Kirchhoff–Choquard equations with a generalized sign-changing potential
In the present work we are concerned with the following Kirchhoff-Choquard-type equation $$-M(||\nabla u||_{2}^{2})\Delta u +Q(x)u + \mu(V(|\cdot|)\ast u^2)u = f(u) \mbox{ in } \mathbb{R}^2 , $$ for $M: \mathbb{R} \rightarrow \mathbb{R}$ given by $M(t)=a+bt$, $ \mu>0 $, $ V $ a sign-changing and possible unbounded potential, $ Q $ a continuous external potential and a nonlinearity $f$ with exponential critical growth. We prove existence and multiplicity of solutions in the nondegenerate case and guarantee the existence of solutions in the degenerate case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rendiconti Lincei-Matematica e Applicazioni
Rendiconti Lincei-Matematica e Applicazioni MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.30
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: The journal is dedicated to the publication of high-quality peer-reviewed surveys, research papers and preliminary announcements of important results from all fields of mathematics and its applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信