探索感知复杂性标准对人机协同装配性能度量的影响

IF 2.4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING
E. Verna, Stefano Puttero, G. Genta, M. Galetto
{"title":"探索感知复杂性标准对人机协同装配性能度量的影响","authors":"E. Verna, Stefano Puttero, G. Genta, M. Galetto","doi":"10.1115/1.4063232","DOIUrl":null,"url":null,"abstract":"\n The use of Human-Robot Collaboration (HRC) in assembly tasks has gained increasing attention in recent years as it allows for the combination of the flexibility and dexterity of human operators with the repeatability of robots, thus meeting the demands of the current market. However, the performance of these collaborative systems is known to be influenced by various factors, including the complexity perceived by operators. This study aimed to investigate the effects of perceived complexity on the performance measures of HRC assembly. An experimental campaign was conducted in which a sample of skilled operators was instructed to perform six different variants of electronic boards and express a complexity assessment based on a set of assembly complexity criteria. Performance measures such as assembly time, in-process defects, quality control times, offline defects, total defects, and human stress response were monitored. The results of the study showed that the perceived complexity had a significant effect on assembly time, in-process and total defects, and human stress response, while no significant effect was found for offline defects and quality control times. Specifically, product variants perceived as more complex resulted in lower performance measures compared to products perceived as less complex. These findings hold important implications for the design and implementation of HRC assembly systems and suggest that perceived complexity should be taken into consideration to increase HRC performance.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the effects of perceived complexity criteria on performance measures of human-robot collaborative assembly\",\"authors\":\"E. Verna, Stefano Puttero, G. Genta, M. Galetto\",\"doi\":\"10.1115/1.4063232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The use of Human-Robot Collaboration (HRC) in assembly tasks has gained increasing attention in recent years as it allows for the combination of the flexibility and dexterity of human operators with the repeatability of robots, thus meeting the demands of the current market. However, the performance of these collaborative systems is known to be influenced by various factors, including the complexity perceived by operators. This study aimed to investigate the effects of perceived complexity on the performance measures of HRC assembly. An experimental campaign was conducted in which a sample of skilled operators was instructed to perform six different variants of electronic boards and express a complexity assessment based on a set of assembly complexity criteria. Performance measures such as assembly time, in-process defects, quality control times, offline defects, total defects, and human stress response were monitored. The results of the study showed that the perceived complexity had a significant effect on assembly time, in-process and total defects, and human stress response, while no significant effect was found for offline defects and quality control times. Specifically, product variants perceived as more complex resulted in lower performance measures compared to products perceived as less complex. These findings hold important implications for the design and implementation of HRC assembly systems and suggest that perceived complexity should be taken into consideration to increase HRC performance.\",\"PeriodicalId\":16299,\"journal\":{\"name\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063232\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063232","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

近年来,在装配任务中使用人机协作(HRC)获得了越来越多的关注,因为它允许将人类操作员的灵活性和灵巧性与机器人的可重复性相结合,从而满足当前市场的需求。然而,众所周知,这些协作系统的性能受到各种因素的影响,包括操作员感知到的复杂性。本研究旨在探讨感知复杂性对HRC装配性能指标的影响。在一项实验活动中,一组熟练的操作人员被指示执行六种不同的电子电路板变体,并根据一套装配复杂性标准表达复杂性评估。性能度量,如装配时间,过程中缺陷,质量控制时间,离线缺陷,总缺陷,和人的压力反应被监控。研究结果表明,感知复杂性对装配时间、过程中缺陷和总缺陷以及人的应激反应有显著影响,而对离线缺陷和质量控制时间没有显著影响。具体来说,与被认为不那么复杂的产品相比,被认为更复杂的产品变体导致了更低的性能度量。这些发现对HRC装配系统的设计和实施具有重要意义,并建议应考虑感知复杂性以提高HRC性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the effects of perceived complexity criteria on performance measures of human-robot collaborative assembly
The use of Human-Robot Collaboration (HRC) in assembly tasks has gained increasing attention in recent years as it allows for the combination of the flexibility and dexterity of human operators with the repeatability of robots, thus meeting the demands of the current market. However, the performance of these collaborative systems is known to be influenced by various factors, including the complexity perceived by operators. This study aimed to investigate the effects of perceived complexity on the performance measures of HRC assembly. An experimental campaign was conducted in which a sample of skilled operators was instructed to perform six different variants of electronic boards and express a complexity assessment based on a set of assembly complexity criteria. Performance measures such as assembly time, in-process defects, quality control times, offline defects, total defects, and human stress response were monitored. The results of the study showed that the perceived complexity had a significant effect on assembly time, in-process and total defects, and human stress response, while no significant effect was found for offline defects and quality control times. Specifically, product variants perceived as more complex resulted in lower performance measures compared to products perceived as less complex. These findings hold important implications for the design and implementation of HRC assembly systems and suggest that perceived complexity should be taken into consideration to increase HRC performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
20.00%
发文量
126
审稿时长
12 months
期刊介绍: Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信