具有破碎漂移的Ornstein-Uhlenbeck过程的首次通过时间密度

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
S. Ankirchner, Christophette Blanchet-Scalliet, Diana Dorobantu, Laura Gay
{"title":"具有破碎漂移的Ornstein-Uhlenbeck过程的首次通过时间密度","authors":"S. Ankirchner, Christophette Blanchet-Scalliet, Diana Dorobantu, Laura Gay","doi":"10.1080/15326349.2022.2026790","DOIUrl":null,"url":null,"abstract":"Abstract We consider an Ornstein–Uhlenbeck process with different drift rates below and above zero. We derive an analytic expression for the density of the first time, where the process hits a given level. The passage time density is linked to the joint law of the process and its running supremum, and we also provide an analytic formula of the joint density/distribution function. Results from a numerical experiment reveal that our formulas allow to numerically evaluate the joint law and the density of the first passage time faster than a simulation-based method.","PeriodicalId":21970,"journal":{"name":"Stochastic Models","volume":"38 1","pages":"308 - 329"},"PeriodicalIF":0.5000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"First passage time density of an Ornstein–Uhlenbeck process with broken drift\",\"authors\":\"S. Ankirchner, Christophette Blanchet-Scalliet, Diana Dorobantu, Laura Gay\",\"doi\":\"10.1080/15326349.2022.2026790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider an Ornstein–Uhlenbeck process with different drift rates below and above zero. We derive an analytic expression for the density of the first time, where the process hits a given level. The passage time density is linked to the joint law of the process and its running supremum, and we also provide an analytic formula of the joint density/distribution function. Results from a numerical experiment reveal that our formulas allow to numerically evaluate the joint law and the density of the first passage time faster than a simulation-based method.\",\"PeriodicalId\":21970,\"journal\":{\"name\":\"Stochastic Models\",\"volume\":\"38 1\",\"pages\":\"308 - 329\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Models\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/15326349.2022.2026790\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/15326349.2022.2026790","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑了一个小于零和大于零的不同漂移率的Ornstein-Uhlenbeck过程。我们第一次导出密度的解析表达式,当过程达到给定水平时。通过时间密度与过程的联合规律及其运行极限相联系,并给出了联合密度/分布函数的解析公式。数值实验结果表明,与基于模拟的方法相比,我们的公式可以更快地对联合律和首次通过时间密度进行数值计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First passage time density of an Ornstein–Uhlenbeck process with broken drift
Abstract We consider an Ornstein–Uhlenbeck process with different drift rates below and above zero. We derive an analytic expression for the density of the first time, where the process hits a given level. The passage time density is linked to the joint law of the process and its running supremum, and we also provide an analytic formula of the joint density/distribution function. Results from a numerical experiment reveal that our formulas allow to numerically evaluate the joint law and the density of the first passage time faster than a simulation-based method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Models
Stochastic Models 数学-统计学与概率论
CiteScore
1.30
自引率
14.30%
发文量
42
审稿时长
>12 weeks
期刊介绍: Stochastic Models publishes papers discussing the theory and applications of probability as they arise in the modeling of phenomena in the natural sciences, social sciences and technology. It presents novel contributions to mathematical theory, using structural, analytical, algorithmic or experimental approaches. In an interdisciplinary context, it discusses practical applications of stochastic models to diverse areas such as biology, computer science, telecommunications modeling, inventories and dams, reliability, storage, queueing theory, mathematical finance and operations research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信