S. Ankirchner, Christophette Blanchet-Scalliet, Diana Dorobantu, Laura Gay
{"title":"具有破碎漂移的Ornstein-Uhlenbeck过程的首次通过时间密度","authors":"S. Ankirchner, Christophette Blanchet-Scalliet, Diana Dorobantu, Laura Gay","doi":"10.1080/15326349.2022.2026790","DOIUrl":null,"url":null,"abstract":"Abstract We consider an Ornstein–Uhlenbeck process with different drift rates below and above zero. We derive an analytic expression for the density of the first time, where the process hits a given level. The passage time density is linked to the joint law of the process and its running supremum, and we also provide an analytic formula of the joint density/distribution function. Results from a numerical experiment reveal that our formulas allow to numerically evaluate the joint law and the density of the first passage time faster than a simulation-based method.","PeriodicalId":21970,"journal":{"name":"Stochastic Models","volume":"38 1","pages":"308 - 329"},"PeriodicalIF":0.5000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"First passage time density of an Ornstein–Uhlenbeck process with broken drift\",\"authors\":\"S. Ankirchner, Christophette Blanchet-Scalliet, Diana Dorobantu, Laura Gay\",\"doi\":\"10.1080/15326349.2022.2026790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider an Ornstein–Uhlenbeck process with different drift rates below and above zero. We derive an analytic expression for the density of the first time, where the process hits a given level. The passage time density is linked to the joint law of the process and its running supremum, and we also provide an analytic formula of the joint density/distribution function. Results from a numerical experiment reveal that our formulas allow to numerically evaluate the joint law and the density of the first passage time faster than a simulation-based method.\",\"PeriodicalId\":21970,\"journal\":{\"name\":\"Stochastic Models\",\"volume\":\"38 1\",\"pages\":\"308 - 329\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Models\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/15326349.2022.2026790\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/15326349.2022.2026790","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
First passage time density of an Ornstein–Uhlenbeck process with broken drift
Abstract We consider an Ornstein–Uhlenbeck process with different drift rates below and above zero. We derive an analytic expression for the density of the first time, where the process hits a given level. The passage time density is linked to the joint law of the process and its running supremum, and we also provide an analytic formula of the joint density/distribution function. Results from a numerical experiment reveal that our formulas allow to numerically evaluate the joint law and the density of the first passage time faster than a simulation-based method.
期刊介绍:
Stochastic Models publishes papers discussing the theory and applications of probability as they arise in the modeling of phenomena in the natural sciences, social sciences and technology. It presents novel contributions to mathematical theory, using structural, analytical, algorithmic or experimental approaches. In an interdisciplinary context, it discusses practical applications of stochastic models to diverse areas such as biology, computer science, telecommunications modeling, inventories and dams, reliability, storage, queueing theory, mathematical finance and operations research.