{"title":"拟阵和背包均值问题的改进逼近算法","authors":"Ao Zhao, Yang Zhou, Qian Liu","doi":"10.1142/s012905412246008x","DOIUrl":null,"url":null,"abstract":"Both matroid means and knapsack means are variations of the classic [Formula: see text]-means problem in which we replace the cardinality constraint by matroid constraint or knapsack constraint respectively. In this paper, we give a 64-approximation algorithm for the matroid means problem and a [Formula: see text]-approximation algorithm for the knapsack means problem by using a simpler and more efficient rounding method. We improve previous 304 approximate ratio for the former and 20016 approximate ratio for the latter. In the rounding process, the application of integrality of the intersection of submodular (or matroid) polyhedra provides strong theoretical support. Moreover, we extend this method to matroid means problem with penalties, and give 64 and 880-approximate algorithms for uniform penalties and nonuniform penalties problem.","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Approximation Algorithms for Matroid and Knapsack Means Problems\",\"authors\":\"Ao Zhao, Yang Zhou, Qian Liu\",\"doi\":\"10.1142/s012905412246008x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Both matroid means and knapsack means are variations of the classic [Formula: see text]-means problem in which we replace the cardinality constraint by matroid constraint or knapsack constraint respectively. In this paper, we give a 64-approximation algorithm for the matroid means problem and a [Formula: see text]-approximation algorithm for the knapsack means problem by using a simpler and more efficient rounding method. We improve previous 304 approximate ratio for the former and 20016 approximate ratio for the latter. In the rounding process, the application of integrality of the intersection of submodular (or matroid) polyhedra provides strong theoretical support. Moreover, we extend this method to matroid means problem with penalties, and give 64 and 880-approximate algorithms for uniform penalties and nonuniform penalties problem.\",\"PeriodicalId\":50323,\"journal\":{\"name\":\"International Journal of Foundations of Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Foundations of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/s012905412246008x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s012905412246008x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Improved Approximation Algorithms for Matroid and Knapsack Means Problems
Both matroid means and knapsack means are variations of the classic [Formula: see text]-means problem in which we replace the cardinality constraint by matroid constraint or knapsack constraint respectively. In this paper, we give a 64-approximation algorithm for the matroid means problem and a [Formula: see text]-approximation algorithm for the knapsack means problem by using a simpler and more efficient rounding method. We improve previous 304 approximate ratio for the former and 20016 approximate ratio for the latter. In the rounding process, the application of integrality of the intersection of submodular (or matroid) polyhedra provides strong theoretical support. Moreover, we extend this method to matroid means problem with penalties, and give 64 and 880-approximate algorithms for uniform penalties and nonuniform penalties problem.
期刊介绍:
The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include:
- Algebraic theory of computing and formal systems
- Algorithm and system implementation issues
- Approximation, probabilistic, and randomized algorithms
- Automata and formal languages
- Automated deduction
- Combinatorics and graph theory
- Complexity theory
- Computational biology and bioinformatics
- Cryptography
- Database theory
- Data structures
- Design and analysis of algorithms
- DNA computing
- Foundations of computer security
- Foundations of high-performance computing