{"title":"基于混沌动态调制的线性正则变换域语音加密","authors":"Liyun Xu, Tong Zhang, Chao Wen","doi":"10.15918/J.JBIT1004-0579.2021.038","DOIUrl":null,"url":null,"abstract":"In order to transmit the speech information safely in the channel, a new speech encryption algorithm in linear canonical transform (LCT) domain based on dynamic modulation of chaotic system is proposed. The algorithm first uses a chaotic system to obtain the number of sampling points of the grouped encrypted signal. Then three chaotic systems are used to modulate the corresponding parameters of the LCT, and each group of transform parameters corresponds to a group of encrypted signals. Thus, each group of signals is transformed by LCT with different parameters. Finally, chaotic encryption is performed on the LCT domain spectrum of each group of signals, to realize the overall encryption of the speech signal. The experimental results show that the proposed algorithm is extremely sensitive to the keys and has a larger key space. Compared with the original signal, the waveform and LCT domain spectrum of obtained encrypted signal are distributed more uniformly and have less correlation, which can realize the safe transmission of speech signals.","PeriodicalId":39252,"journal":{"name":"Journal of Beijing Institute of Technology (English Edition)","volume":"30 1","pages":"295-304"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speech Encryption in Linear Canonical Transform Domain Based on Chaotic Dynamic Modulation\",\"authors\":\"Liyun Xu, Tong Zhang, Chao Wen\",\"doi\":\"10.15918/J.JBIT1004-0579.2021.038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to transmit the speech information safely in the channel, a new speech encryption algorithm in linear canonical transform (LCT) domain based on dynamic modulation of chaotic system is proposed. The algorithm first uses a chaotic system to obtain the number of sampling points of the grouped encrypted signal. Then three chaotic systems are used to modulate the corresponding parameters of the LCT, and each group of transform parameters corresponds to a group of encrypted signals. Thus, each group of signals is transformed by LCT with different parameters. Finally, chaotic encryption is performed on the LCT domain spectrum of each group of signals, to realize the overall encryption of the speech signal. The experimental results show that the proposed algorithm is extremely sensitive to the keys and has a larger key space. Compared with the original signal, the waveform and LCT domain spectrum of obtained encrypted signal are distributed more uniformly and have less correlation, which can realize the safe transmission of speech signals.\",\"PeriodicalId\":39252,\"journal\":{\"name\":\"Journal of Beijing Institute of Technology (English Edition)\",\"volume\":\"30 1\",\"pages\":\"295-304\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Beijing Institute of Technology (English Edition)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15918/J.JBIT1004-0579.2021.038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Beijing Institute of Technology (English Edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15918/J.JBIT1004-0579.2021.038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Speech Encryption in Linear Canonical Transform Domain Based on Chaotic Dynamic Modulation
In order to transmit the speech information safely in the channel, a new speech encryption algorithm in linear canonical transform (LCT) domain based on dynamic modulation of chaotic system is proposed. The algorithm first uses a chaotic system to obtain the number of sampling points of the grouped encrypted signal. Then three chaotic systems are used to modulate the corresponding parameters of the LCT, and each group of transform parameters corresponds to a group of encrypted signals. Thus, each group of signals is transformed by LCT with different parameters. Finally, chaotic encryption is performed on the LCT domain spectrum of each group of signals, to realize the overall encryption of the speech signal. The experimental results show that the proposed algorithm is extremely sensitive to the keys and has a larger key space. Compared with the original signal, the waveform and LCT domain spectrum of obtained encrypted signal are distributed more uniformly and have less correlation, which can realize the safe transmission of speech signals.