{"title":"基于阻抗理论的水下机械捕获系统柔顺控制器研究","authors":"Yuanjie Liu, Fu-Yuan Zha, Qiming Wang, Chao Zheng, Jinrui Zhou, Lianzhao Zhang","doi":"10.13052/ijfp1439-9776.2432","DOIUrl":null,"url":null,"abstract":"Due to the requirement of the exploitation of marine resources, the execution of specific underwater tasks by onboard manipulators has become one of the key research fields in domestic and all over the world. Based on the underwater capture system designed for the UUV recycling task, which consists of an underwater manipulator and a mechanical capture device, this paper first constructs the kinematics and dynamics model of the capture system through theoretical analysis such as theoretical mechanics and theory of mechanism. Then, combined with the requirements of the recycling task, through the theoretical basis of fluid mechanics such as Morrison equation, dynamic of the capture system in underwater environment is analysed, with a compliant controller designed for the capture system based on impedance theory in order to reduce the impact of underwater environment in the capture task. Moreover, as the capture system modelled in the Adams dynamics simulation platform, it is verified that the designed compliant controller can reduce the underwater environmental impact through simulation experiments in the Adams dynamic platform.","PeriodicalId":13977,"journal":{"name":"International Journal of Fluid Power","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Compliant Controller of Underwater Mechanical Capture System Based on Impedance Theory\",\"authors\":\"Yuanjie Liu, Fu-Yuan Zha, Qiming Wang, Chao Zheng, Jinrui Zhou, Lianzhao Zhang\",\"doi\":\"10.13052/ijfp1439-9776.2432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the requirement of the exploitation of marine resources, the execution of specific underwater tasks by onboard manipulators has become one of the key research fields in domestic and all over the world. Based on the underwater capture system designed for the UUV recycling task, which consists of an underwater manipulator and a mechanical capture device, this paper first constructs the kinematics and dynamics model of the capture system through theoretical analysis such as theoretical mechanics and theory of mechanism. Then, combined with the requirements of the recycling task, through the theoretical basis of fluid mechanics such as Morrison equation, dynamic of the capture system in underwater environment is analysed, with a compliant controller designed for the capture system based on impedance theory in order to reduce the impact of underwater environment in the capture task. Moreover, as the capture system modelled in the Adams dynamics simulation platform, it is verified that the designed compliant controller can reduce the underwater environmental impact through simulation experiments in the Adams dynamic platform.\",\"PeriodicalId\":13977,\"journal\":{\"name\":\"International Journal of Fluid Power\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fluid Power\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/ijfp1439-9776.2432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fluid Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ijfp1439-9776.2432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Research on Compliant Controller of Underwater Mechanical Capture System Based on Impedance Theory
Due to the requirement of the exploitation of marine resources, the execution of specific underwater tasks by onboard manipulators has become one of the key research fields in domestic and all over the world. Based on the underwater capture system designed for the UUV recycling task, which consists of an underwater manipulator and a mechanical capture device, this paper first constructs the kinematics and dynamics model of the capture system through theoretical analysis such as theoretical mechanics and theory of mechanism. Then, combined with the requirements of the recycling task, through the theoretical basis of fluid mechanics such as Morrison equation, dynamic of the capture system in underwater environment is analysed, with a compliant controller designed for the capture system based on impedance theory in order to reduce the impact of underwater environment in the capture task. Moreover, as the capture system modelled in the Adams dynamics simulation platform, it is verified that the designed compliant controller can reduce the underwater environmental impact through simulation experiments in the Adams dynamic platform.