桥梁施工中旋转机构分析与设计的有效接触模型

IF 0.6 4区 工程技术 Q4 ENGINEERING, CIVIL
Shiping Huang, Yong Tang, Zhao Yuan, Xiaopeng Cai
{"title":"桥梁施工中旋转机构分析与设计的有效接触模型","authors":"Shiping Huang, Yong Tang, Zhao Yuan, Xiaopeng Cai","doi":"10.7250/BJRBE.2021-16.515","DOIUrl":null,"url":null,"abstract":"The rotation superstructure construction method is a widespread technique in bridge engineering. The critical issue for the successful application of this technique is the contact interface analysis and design for the rotating mechanism. A semi-analytical method predicated upon obtaining a uniform distribution of pressure on the slide plates within the interface is proposed. The surface design typically generates a nonlinear stress distribution. It leads to local damage and local asperity interlocking, which increase the contact friction dramatically during the rotation. In contrast, the proposed approach provides a surface that avoids stress concentrations and is expected to reduce the material cost of the slide plates. The proposed method is verified by the Finite Element Model. It can be used in a broad area involving contacting surface design, especially in the rotating mechanism design for bridge construction.","PeriodicalId":55402,"journal":{"name":"Baltic Journal of Road and Bridge Engineering","volume":"16 1","pages":"57-76"},"PeriodicalIF":0.6000,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Contact Model for Rotating Mechanism Analysis and Design in Bridge Construction\",\"authors\":\"Shiping Huang, Yong Tang, Zhao Yuan, Xiaopeng Cai\",\"doi\":\"10.7250/BJRBE.2021-16.515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rotation superstructure construction method is a widespread technique in bridge engineering. The critical issue for the successful application of this technique is the contact interface analysis and design for the rotating mechanism. A semi-analytical method predicated upon obtaining a uniform distribution of pressure on the slide plates within the interface is proposed. The surface design typically generates a nonlinear stress distribution. It leads to local damage and local asperity interlocking, which increase the contact friction dramatically during the rotation. In contrast, the proposed approach provides a surface that avoids stress concentrations and is expected to reduce the material cost of the slide plates. The proposed method is verified by the Finite Element Model. It can be used in a broad area involving contacting surface design, especially in the rotating mechanism design for bridge construction.\",\"PeriodicalId\":55402,\"journal\":{\"name\":\"Baltic Journal of Road and Bridge Engineering\",\"volume\":\"16 1\",\"pages\":\"57-76\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Baltic Journal of Road and Bridge Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.7250/BJRBE.2021-16.515\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baltic Journal of Road and Bridge Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7250/BJRBE.2021-16.515","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

上部结构转体施工方法是桥梁工程中广泛应用的一种施工方法。旋转机构的接触界面分析与设计是该技术成功应用的关键问题。提出了一种基于在界面内滑动板上获得均匀压力分布的半解析方法。表面设计通常会产生非线性应力分布。它导致局部损伤和局部凹凸互锁,使旋转过程中的接触摩擦急剧增加。相反,所提出的方法提供了一种避免应力集中的表面,并有望降低滑板的材料成本。通过有限元模型对该方法进行了验证。它可以广泛应用于接触面设计领域,特别是桥梁结构的旋转机构设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Contact Model for Rotating Mechanism Analysis and Design in Bridge Construction
The rotation superstructure construction method is a widespread technique in bridge engineering. The critical issue for the successful application of this technique is the contact interface analysis and design for the rotating mechanism. A semi-analytical method predicated upon obtaining a uniform distribution of pressure on the slide plates within the interface is proposed. The surface design typically generates a nonlinear stress distribution. It leads to local damage and local asperity interlocking, which increase the contact friction dramatically during the rotation. In contrast, the proposed approach provides a surface that avoids stress concentrations and is expected to reduce the material cost of the slide plates. The proposed method is verified by the Finite Element Model. It can be used in a broad area involving contacting surface design, especially in the rotating mechanism design for bridge construction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Baltic Journal of Road and Bridge Engineering
Baltic Journal of Road and Bridge Engineering 工程技术-工程:土木
CiteScore
2.10
自引率
9.10%
发文量
25
审稿时长
>12 weeks
期刊介绍: THE JOURNAL IS DESIGNED FOR PUBLISHING PAPERS CONCERNING THE FOLLOWING AREAS OF RESEARCH: road and bridge research and design, road construction materials and technologies, bridge construction materials and technologies, road and bridge repair, road and bridge maintenance, traffic safety, road and bridge information technologies, environmental issues, road climatology, low-volume roads, normative documentation, quality management and assurance, road infrastructure and its assessment, asset management, road and bridge construction financing, specialist pre-service and in-service training;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信