{"title":"人机对话中断检测","authors":"Leonardo de Andrade, Ivandré Paraboni","doi":"10.21814/lm.14.1.354","DOIUrl":null,"url":null,"abstract":"Com o crescimento constante no uso de tecnologias de relacionamento com o consumidor na Internet, os sistemas de chatbot se tornaram onipresentes no processamento de linguagem natural (PLN) e áreas relacionadas. Apesar dos avanços significativos nos últimos anos, no entanto, sistemas desse tipo nem sempre fornecem resultados plausíveis e consistentes, em muitos casos levando a uma quebra no diálogo. Assim, há grande interesse em investigar as circunstâncias nas quais erros deste tipo são produzidos e, quando possível, aprimorar o projeto destes sistemas de modo a minimizar tais erros. Com base nestas observações, neste trabalho abordamos a questão da detecção automática de quebras em diálogos humano-computador apresentando três modelos que levam em consideração o histórico de diálogo para decidir quando ele possui maior probabilidade de culminar em uma quebra. Os modelos propostos exploram uma variedade de métodos de PLN recentes, e são avaliados tanto com base em um conjunto de dados de diálogos reais em português entre usuários humanos e sistemas de chatbot desenvolvido especificamente para este fim, como também utilizando benchmarks publicamente disponíveis para o idioma inglês.","PeriodicalId":41819,"journal":{"name":"Linguamatica","volume":"14 1","pages":"17-31"},"PeriodicalIF":0.3000,"publicationDate":"2022-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecção de quebras em diálogos humano-computador\",\"authors\":\"Leonardo de Andrade, Ivandré Paraboni\",\"doi\":\"10.21814/lm.14.1.354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Com o crescimento constante no uso de tecnologias de relacionamento com o consumidor na Internet, os sistemas de chatbot se tornaram onipresentes no processamento de linguagem natural (PLN) e áreas relacionadas. Apesar dos avanços significativos nos últimos anos, no entanto, sistemas desse tipo nem sempre fornecem resultados plausíveis e consistentes, em muitos casos levando a uma quebra no diálogo. Assim, há grande interesse em investigar as circunstâncias nas quais erros deste tipo são produzidos e, quando possível, aprimorar o projeto destes sistemas de modo a minimizar tais erros. Com base nestas observações, neste trabalho abordamos a questão da detecção automática de quebras em diálogos humano-computador apresentando três modelos que levam em consideração o histórico de diálogo para decidir quando ele possui maior probabilidade de culminar em uma quebra. Os modelos propostos exploram uma variedade de métodos de PLN recentes, e são avaliados tanto com base em um conjunto de dados de diálogos reais em português entre usuários humanos e sistemas de chatbot desenvolvido especificamente para este fim, como também utilizando benchmarks publicamente disponíveis para o idioma inglês.\",\"PeriodicalId\":41819,\"journal\":{\"name\":\"Linguamatica\",\"volume\":\"14 1\",\"pages\":\"17-31\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linguamatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21814/lm.14.1.354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linguamatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21814/lm.14.1.354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LINGUISTICS","Score":null,"Total":0}
Com o crescimento constante no uso de tecnologias de relacionamento com o consumidor na Internet, os sistemas de chatbot se tornaram onipresentes no processamento de linguagem natural (PLN) e áreas relacionadas. Apesar dos avanços significativos nos últimos anos, no entanto, sistemas desse tipo nem sempre fornecem resultados plausíveis e consistentes, em muitos casos levando a uma quebra no diálogo. Assim, há grande interesse em investigar as circunstâncias nas quais erros deste tipo são produzidos e, quando possível, aprimorar o projeto destes sistemas de modo a minimizar tais erros. Com base nestas observações, neste trabalho abordamos a questão da detecção automática de quebras em diálogos humano-computador apresentando três modelos que levam em consideração o histórico de diálogo para decidir quando ele possui maior probabilidade de culminar em uma quebra. Os modelos propostos exploram uma variedade de métodos de PLN recentes, e são avaliados tanto com base em um conjunto de dados de diálogos reais em português entre usuários humanos e sistemas de chatbot desenvolvido especificamente para este fim, como também utilizando benchmarks publicamente disponíveis para o idioma inglês.