Gromov双曲$\operatorname{CAT}(0)$-空间中的调和拟等距映射

IF 1.3 1区 数学 Q1 MATHEMATICS
H. Sidler, S. Wenger
{"title":"Gromov双曲$\\operatorname{CAT}(0)$-空间中的调和拟等距映射","authors":"H. Sidler, S. Wenger","doi":"10.4310/JDG/1625860625","DOIUrl":null,"url":null,"abstract":"We show that for every quasi-isometric map from a Hadamard manifold of pinched negative curvature to a proper, Gromov hyperbolic, $\\operatorname{CAT}(0)$-space there exists an energy minimizing harmonic map at finite distance. This harmonic map is moreover Lipschitz. This generalizes a recent result of Benoist–Hulin.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Harmonic quasi-isometric maps into Gromov hyperbolic $\\\\operatorname{CAT}(0)$-spaces\",\"authors\":\"H. Sidler, S. Wenger\",\"doi\":\"10.4310/JDG/1625860625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that for every quasi-isometric map from a Hadamard manifold of pinched negative curvature to a proper, Gromov hyperbolic, $\\\\operatorname{CAT}(0)$-space there exists an energy minimizing harmonic map at finite distance. This harmonic map is moreover Lipschitz. This generalizes a recent result of Benoist–Hulin.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JDG/1625860625\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JDG/1625860625","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了从压缩负曲率的Hadamard流形到固有的Gromov双曲$\operatorname{CAT}(0)$-空间的每一个拟等距映射存在一个有限距离上的能量极小调和映射。这个谐波图也是利普希茨图。这概括了Benoist-Hulin最近的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harmonic quasi-isometric maps into Gromov hyperbolic $\operatorname{CAT}(0)$-spaces
We show that for every quasi-isometric map from a Hadamard manifold of pinched negative curvature to a proper, Gromov hyperbolic, $\operatorname{CAT}(0)$-space there exists an energy minimizing harmonic map at finite distance. This harmonic map is moreover Lipschitz. This generalizes a recent result of Benoist–Hulin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信