{"title":"Gromov双曲$\\operatorname{CAT}(0)$-空间中的调和拟等距映射","authors":"H. Sidler, S. Wenger","doi":"10.4310/JDG/1625860625","DOIUrl":null,"url":null,"abstract":"We show that for every quasi-isometric map from a Hadamard manifold of pinched negative curvature to a proper, Gromov hyperbolic, $\\operatorname{CAT}(0)$-space there exists an energy minimizing harmonic map at finite distance. This harmonic map is moreover Lipschitz. This generalizes a recent result of Benoist–Hulin.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Harmonic quasi-isometric maps into Gromov hyperbolic $\\\\operatorname{CAT}(0)$-spaces\",\"authors\":\"H. Sidler, S. Wenger\",\"doi\":\"10.4310/JDG/1625860625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that for every quasi-isometric map from a Hadamard manifold of pinched negative curvature to a proper, Gromov hyperbolic, $\\\\operatorname{CAT}(0)$-space there exists an energy minimizing harmonic map at finite distance. This harmonic map is moreover Lipschitz. This generalizes a recent result of Benoist–Hulin.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JDG/1625860625\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JDG/1625860625","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Harmonic quasi-isometric maps into Gromov hyperbolic $\operatorname{CAT}(0)$-spaces
We show that for every quasi-isometric map from a Hadamard manifold of pinched negative curvature to a proper, Gromov hyperbolic, $\operatorname{CAT}(0)$-space there exists an energy minimizing harmonic map at finite distance. This harmonic map is moreover Lipschitz. This generalizes a recent result of Benoist–Hulin.
期刊介绍:
Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.