分数概率空间的收敛性和0-1 Kolmogorov定理

IF 0.1 Q4 MATHEMATICS
A. Zendehdel, Parisa Ahmadi Ghotbi
{"title":"分数概率空间的收敛性和0-1 Kolmogorov定理","authors":"A. Zendehdel, Parisa Ahmadi Ghotbi","doi":"10.1080/25742558.2018.1475612","DOIUrl":null,"url":null,"abstract":"Abstract In this study, we define the fractional random variable. The concept of convergence in fractional probability, almost surely convergence and some related theorems and examples are studied with the purpose of expanding the fractional probability theory parallel to the classical one. It is shown that almost surely convergence in the fractional probability space does not lead to the convergence in fractional probability. And, some valuable features related to fractional probability theory such as Cauchy function in fractional probability are discussed. We proved that a fractional random variable converges in fractional probability if it is Cauchy in fractional probability. Finally, the well-known 0-1 Kolmogorov theorem is proved in a fractional probability space.","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25742558.2018.1475612","citationCount":"0","resultStr":"{\"title\":\"Convergence in fractional probability space and 0-1 Kolmogorov theorem\",\"authors\":\"A. Zendehdel, Parisa Ahmadi Ghotbi\",\"doi\":\"10.1080/25742558.2018.1475612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, we define the fractional random variable. The concept of convergence in fractional probability, almost surely convergence and some related theorems and examples are studied with the purpose of expanding the fractional probability theory parallel to the classical one. It is shown that almost surely convergence in the fractional probability space does not lead to the convergence in fractional probability. And, some valuable features related to fractional probability theory such as Cauchy function in fractional probability are discussed. We proved that a fractional random variable converges in fractional probability if it is Cauchy in fractional probability. Finally, the well-known 0-1 Kolmogorov theorem is proved in a fractional probability space.\",\"PeriodicalId\":92618,\"journal\":{\"name\":\"Cogent mathematics & statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/25742558.2018.1475612\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent mathematics & statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25742558.2018.1475612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25742558.2018.1475612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们定义了分数随机变量。研究了分数阶概率论的收敛性、几乎必然收敛性的概念,并给出了一些相关的定理和例子,目的是将分数阶概率论扩展到与经典概率论平行的领域。证明了分数阶概率空间的收敛几乎肯定不会导致分数阶概率空间的收敛。讨论了分数阶概率论的一些有价值的特征,如分数阶概率论中的柯西函数。证明了分数阶随机变量在分数阶概率上是柯西的情况下收敛于分数阶概率。最后,在分数阶概率空间中证明了著名的0-1 Kolmogorov定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence in fractional probability space and 0-1 Kolmogorov theorem
Abstract In this study, we define the fractional random variable. The concept of convergence in fractional probability, almost surely convergence and some related theorems and examples are studied with the purpose of expanding the fractional probability theory parallel to the classical one. It is shown that almost surely convergence in the fractional probability space does not lead to the convergence in fractional probability. And, some valuable features related to fractional probability theory such as Cauchy function in fractional probability are discussed. We proved that a fractional random variable converges in fractional probability if it is Cauchy in fractional probability. Finally, the well-known 0-1 Kolmogorov theorem is proved in a fractional probability space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信