广义Hermite过程(gHp)的Wiener积分。应用范围:具有高频噪声的SDEs

IF 0.3 Q4 STATISTICS & PROBABILITY
Atef Lechiheb
{"title":"广义Hermite过程(gHp)的Wiener积分。应用范围:具有高频噪声的SDEs","authors":"Atef Lechiheb","doi":"10.1515/rose-2023-2001","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we introduce Wiener integrals with respect to the generalized Hermite process and we prove a non-central limit theorem in which this integral appears as limit. As an application, we investigate the corresponding stochastic differential equations with the generalized Hermite process as a driving noise, we prove the existence and the uniqueness of the solution, and we give a generalization of the Hermite Ornstein–Uhlenbeck process and the Hermite-driving Vasicek process.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"31 1","pages":"87 - 102"},"PeriodicalIF":0.3000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wiener integrals with respect to the generalized Hermite process (gHp). Applications: SDEs with gHp noise\",\"authors\":\"Atef Lechiheb\",\"doi\":\"10.1515/rose-2023-2001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we introduce Wiener integrals with respect to the generalized Hermite process and we prove a non-central limit theorem in which this integral appears as limit. As an application, we investigate the corresponding stochastic differential equations with the generalized Hermite process as a driving noise, we prove the existence and the uniqueness of the solution, and we give a generalization of the Hermite Ornstein–Uhlenbeck process and the Hermite-driving Vasicek process.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\"31 1\",\"pages\":\"87 - 102\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2023-2001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2023-2001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文引入广义Hermite过程的Wiener积分,并证明了一个以该积分为极限的非中心极限定理。作为应用,我们研究了以广义Hermite过程作为驱动噪声的相应随机微分方程,证明了解的存在唯一性,并给出了Hermite Ornstein-Uhlenbeck过程和Hermite驱动Vasicek过程的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wiener integrals with respect to the generalized Hermite process (gHp). Applications: SDEs with gHp noise
Abstract In this paper, we introduce Wiener integrals with respect to the generalized Hermite process and we prove a non-central limit theorem in which this integral appears as limit. As an application, we investigate the corresponding stochastic differential equations with the generalized Hermite process as a driving noise, we prove the existence and the uniqueness of the solution, and we give a generalization of the Hermite Ornstein–Uhlenbeck process and the Hermite-driving Vasicek process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信