新冠肺炎超级传播事件的混沌:基于数据驱动方法的分析

IF 1 Q4 HEALTH POLICY & SERVICES
N. Ganegoda, S. Perera
{"title":"新冠肺炎超级传播事件的混沌:基于数据驱动方法的分析","authors":"N. Ganegoda, S. Perera","doi":"10.1177/09720634221150964","DOIUrl":null,"url":null,"abstract":"Superspreading has become a key mechanism of COVID-19 transmission which creates chaos. The classical approach of compartmental models may not sufficiently reflect the epidemiological situation amid superspreading events (SSEs). We perform a data-driven approach and recognise the deterministic chaos of confirmed cases. The first derivative (≈difference of total confirmed cases) and the second derivative (≈difference of the first derivative) are used upon SSEs to showcase the chaos. Varying solution trajectories, sensitivity and numerical unpredictability are the chaotic characteristics discussed here.","PeriodicalId":45421,"journal":{"name":"Journal of Health Management","volume":"25 1","pages":"514 - 525"},"PeriodicalIF":1.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chaos of COVID-19 Superspreading Events: An Analysis Via a Data-driven Approach\",\"authors\":\"N. Ganegoda, S. Perera\",\"doi\":\"10.1177/09720634221150964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Superspreading has become a key mechanism of COVID-19 transmission which creates chaos. The classical approach of compartmental models may not sufficiently reflect the epidemiological situation amid superspreading events (SSEs). We perform a data-driven approach and recognise the deterministic chaos of confirmed cases. The first derivative (≈difference of total confirmed cases) and the second derivative (≈difference of the first derivative) are used upon SSEs to showcase the chaos. Varying solution trajectories, sensitivity and numerical unpredictability are the chaotic characteristics discussed here.\",\"PeriodicalId\":45421,\"journal\":{\"name\":\"Journal of Health Management\",\"volume\":\"25 1\",\"pages\":\"514 - 525\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Health Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09720634221150964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"HEALTH POLICY & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Health Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09720634221150964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

超级传播已成为新冠肺炎传播的关键机制,造成混乱。分区模型的经典方法可能无法充分反映超级传播事件(SSEs)中的流行病学状况。我们采用数据驱动的方法,识别确诊病例的确定性混乱。SSE使用一阶导数(≈总确诊病例的差)和二阶导数(≠一阶导数的差)来展示混乱。变解轨迹、灵敏度和数值不可预测性是本文讨论的混沌特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chaos of COVID-19 Superspreading Events: An Analysis Via a Data-driven Approach
Superspreading has become a key mechanism of COVID-19 transmission which creates chaos. The classical approach of compartmental models may not sufficiently reflect the epidemiological situation amid superspreading events (SSEs). We perform a data-driven approach and recognise the deterministic chaos of confirmed cases. The first derivative (≈difference of total confirmed cases) and the second derivative (≈difference of the first derivative) are used upon SSEs to showcase the chaos. Varying solution trajectories, sensitivity and numerical unpredictability are the chaotic characteristics discussed here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Health Management
Journal of Health Management HEALTH POLICY & SERVICES-
CiteScore
3.40
自引率
0.00%
发文量
84
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信